MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsleval Structured version   Visualization version   GIF version

Theorem prdsleval 17524
Description: Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsleval.l = (le‘𝑌)
Assertion
Ref Expression
prdsleval (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   (𝑥)

Proof of Theorem prdsleval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5149 . . 3 (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ )
2 prdsbasmpt.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
3 prdsbasmpt.s . . . . . 6 (𝜑𝑆𝑉)
4 prdsbasmpt.r . . . . . . 7 (𝜑𝑅 Fn 𝐼)
5 prdsbasmpt.i . . . . . . 7 (𝜑𝐼𝑊)
6 fnex 7237 . . . . . . 7 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
74, 5, 6syl2anc 584 . . . . . 6 (𝜑𝑅 ∈ V)
8 prdsbasmpt.b . . . . . 6 𝐵 = (Base‘𝑌)
94fndmd 6674 . . . . . 6 (𝜑 → dom 𝑅 = 𝐼)
10 prdsleval.l . . . . . 6 = (le‘𝑌)
112, 3, 7, 8, 9, 10prdsle 17509 . . . . 5 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
12 vex 3482 . . . . . . . 8 𝑓 ∈ V
13 vex 3482 . . . . . . . 8 𝑔 ∈ V
1412, 13prss 4825 . . . . . . 7 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
1514anbi1i 624 . . . . . 6 (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
1615opabbii 5215 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}
1711, 16eqtr4di 2793 . . . 4 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
1817eleq2d 2825 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
191, 18bitrid 283 . 2 (𝜑 → (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
20 prdsplusgval.f . . 3 (𝜑𝐹𝐵)
21 prdsplusgval.g . . 3 (𝜑𝐺𝐵)
22 fveq1 6906 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
23 fveq1 6906 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2422, 23breqan12d 5164 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2524ralbidv 3176 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2625opelopab2a 5545 . . 3 ((𝐹𝐵𝐺𝐵) → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2720, 21, 26syl2anc 584 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2819, 27bitrd 279 1 (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963  {cpr 4633  cop 4637   class class class wbr 5148  {copab 5210   Fn wfn 6558  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  Xscprds 17492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-prds 17494
This theorem is referenced by:  xpsle  17626
  Copyright terms: Public domain W3C validator