MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsleval Structured version   Visualization version   GIF version

Theorem prdsleval 17186
Description: Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsleval.l = (le‘𝑌)
Assertion
Ref Expression
prdsleval (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   (𝑥)

Proof of Theorem prdsleval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5080 . . 3 (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ )
2 prdsbasmpt.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
3 prdsbasmpt.s . . . . . 6 (𝜑𝑆𝑉)
4 prdsbasmpt.r . . . . . . 7 (𝜑𝑅 Fn 𝐼)
5 prdsbasmpt.i . . . . . . 7 (𝜑𝐼𝑊)
6 fnex 7090 . . . . . . 7 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
74, 5, 6syl2anc 584 . . . . . 6 (𝜑𝑅 ∈ V)
8 prdsbasmpt.b . . . . . 6 𝐵 = (Base‘𝑌)
94fndmd 6536 . . . . . 6 (𝜑 → dom 𝑅 = 𝐼)
10 prdsleval.l . . . . . 6 = (le‘𝑌)
112, 3, 7, 8, 9, 10prdsle 17171 . . . . 5 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
12 vex 3435 . . . . . . . 8 𝑓 ∈ V
13 vex 3435 . . . . . . . 8 𝑔 ∈ V
1412, 13prss 4759 . . . . . . 7 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
1514anbi1i 624 . . . . . 6 (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
1615opabbii 5146 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}
1711, 16eqtr4di 2798 . . . 4 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
1817eleq2d 2826 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
191, 18bitrid 282 . 2 (𝜑 → (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
20 prdsplusgval.f . . 3 (𝜑𝐹𝐵)
21 prdsplusgval.g . . 3 (𝜑𝐺𝐵)
22 fveq1 6770 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
23 fveq1 6770 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2422, 23breqan12d 5095 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2524ralbidv 3123 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2625opelopab2a 5451 . . 3 ((𝐹𝐵𝐺𝐵) → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2720, 21, 26syl2anc 584 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2819, 27bitrd 278 1 (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  wss 3892  {cpr 4569  cop 4573   class class class wbr 5079  {copab 5141   Fn wfn 6427  cfv 6432  (class class class)co 7271  Basecbs 16910  lecple 16967  Xscprds 17154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-fz 13239  df-struct 16846  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-hom 16984  df-cco 16985  df-prds 17156
This theorem is referenced by:  xpsle  17288
  Copyright terms: Public domain W3C validator