MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsleval Structured version   Visualization version   GIF version

Theorem prdsleval 17440
Description: Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsleval.l = (le‘𝑌)
Assertion
Ref Expression
prdsleval (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   (𝑥)

Proof of Theorem prdsleval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5108 . . 3 (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ )
2 prdsbasmpt.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
3 prdsbasmpt.s . . . . . 6 (𝜑𝑆𝑉)
4 prdsbasmpt.r . . . . . . 7 (𝜑𝑅 Fn 𝐼)
5 prdsbasmpt.i . . . . . . 7 (𝜑𝐼𝑊)
6 fnex 7191 . . . . . . 7 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
74, 5, 6syl2anc 584 . . . . . 6 (𝜑𝑅 ∈ V)
8 prdsbasmpt.b . . . . . 6 𝐵 = (Base‘𝑌)
94fndmd 6623 . . . . . 6 (𝜑 → dom 𝑅 = 𝐼)
10 prdsleval.l . . . . . 6 = (le‘𝑌)
112, 3, 7, 8, 9, 10prdsle 17425 . . . . 5 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
12 vex 3451 . . . . . . . 8 𝑓 ∈ V
13 vex 3451 . . . . . . . 8 𝑔 ∈ V
1412, 13prss 4784 . . . . . . 7 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
1514anbi1i 624 . . . . . 6 (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
1615opabbii 5174 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}
1711, 16eqtr4di 2782 . . . 4 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
1817eleq2d 2814 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
191, 18bitrid 283 . 2 (𝜑 → (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
20 prdsplusgval.f . . 3 (𝜑𝐹𝐵)
21 prdsplusgval.g . . 3 (𝜑𝐺𝐵)
22 fveq1 6857 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
23 fveq1 6857 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2422, 23breqan12d 5123 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2524ralbidv 3156 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2625opelopab2a 5495 . . 3 ((𝐹𝐵𝐺𝐵) → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2720, 21, 26syl2anc 584 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2819, 27bitrd 279 1 (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  {cpr 4591  cop 4595   class class class wbr 5107  {copab 5169   Fn wfn 6506  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  Xscprds 17408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-prds 17410
This theorem is referenced by:  xpsle  17542
  Copyright terms: Public domain W3C validator