Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9b Structured version   Visualization version   GIF version

Theorem cdleme9b 40219
Description: Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.)
Hypotheses
Ref Expression
cdleme9b.b 𝐵 = (Base‘𝐾)
cdleme9b.j = (join‘𝐾)
cdleme9b.m = (meet‘𝐾)
cdleme9b.a 𝐴 = (Atoms‘𝐾)
cdleme9b.h 𝐻 = (LHyp‘𝐾)
cdleme9b.c 𝐶 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
cdleme9b ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶𝐵)

Proof of Theorem cdleme9b
StepHypRef Expression
1 cdleme9b.c . 2 𝐶 = ((𝑃 𝑆) 𝑊)
2 hllat 39329 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32adantr 480 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐾 ∈ Lat)
4 cdleme9b.b . . . . 5 𝐵 = (Base‘𝐾)
5 cdleme9b.j . . . . 5 = (join‘𝐾)
6 cdleme9b.a . . . . 5 𝐴 = (Atoms‘𝐾)
74, 5, 6hlatjcl 39333 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ 𝐵)
873adant3r3 1185 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → (𝑃 𝑆) ∈ 𝐵)
9 simpr3 1197 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝑊𝐻)
10 cdleme9b.h . . . . 5 𝐻 = (LHyp‘𝐾)
114, 10lhpbase 39965 . . . 4 (𝑊𝐻𝑊𝐵)
129, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝑊𝐵)
13 cdleme9b.m . . . 4 = (meet‘𝐾)
144, 13latmcl 18375 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑆) 𝑊) ∈ 𝐵)
153, 8, 12, 14syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → ((𝑃 𝑆) 𝑊) ∈ 𝐵)
161, 15eqeltrid 2832 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  joincjn 18248  meetcmee 18249  Latclat 18366  Atomscatm 39229  HLchlt 39316  LHypclh 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-lat 18367  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-lhyp 39955
This theorem is referenced by:  cdleme15b  40242  cdleme17b  40254
  Copyright terms: Public domain W3C validator