Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9b Structured version   Visualization version   GIF version

Theorem cdleme9b 40271
Description: Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.)
Hypotheses
Ref Expression
cdleme9b.b 𝐵 = (Base‘𝐾)
cdleme9b.j = (join‘𝐾)
cdleme9b.m = (meet‘𝐾)
cdleme9b.a 𝐴 = (Atoms‘𝐾)
cdleme9b.h 𝐻 = (LHyp‘𝐾)
cdleme9b.c 𝐶 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
cdleme9b ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶𝐵)

Proof of Theorem cdleme9b
StepHypRef Expression
1 cdleme9b.c . 2 𝐶 = ((𝑃 𝑆) 𝑊)
2 hllat 39381 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32adantr 480 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐾 ∈ Lat)
4 cdleme9b.b . . . . 5 𝐵 = (Base‘𝐾)
5 cdleme9b.j . . . . 5 = (join‘𝐾)
6 cdleme9b.a . . . . 5 𝐴 = (Atoms‘𝐾)
74, 5, 6hlatjcl 39385 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ 𝐵)
873adant3r3 1185 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → (𝑃 𝑆) ∈ 𝐵)
9 simpr3 1197 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝑊𝐻)
10 cdleme9b.h . . . . 5 𝐻 = (LHyp‘𝐾)
114, 10lhpbase 40017 . . . 4 (𝑊𝐻𝑊𝐵)
129, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝑊𝐵)
13 cdleme9b.m . . . 4 = (meet‘𝐾)
144, 13latmcl 18450 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑆) 𝑊) ∈ 𝐵)
153, 8, 12, 14syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → ((𝑃 𝑆) 𝑊) ∈ 𝐵)
161, 15eqeltrid 2838 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  joincjn 18323  meetcmee 18324  Latclat 18441  Atomscatm 39281  HLchlt 39368  LHypclh 40003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-lat 18442  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007
This theorem is referenced by:  cdleme15b  40294  cdleme17b  40306
  Copyright terms: Public domain W3C validator