![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme9b | Structured version Visualization version GIF version |
Description: Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.) |
Ref | Expression |
---|---|
cdleme9b.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleme9b.j | ⊢ ∨ = (join‘𝐾) |
cdleme9b.m | ⊢ ∧ = (meet‘𝐾) |
cdleme9b.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme9b.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme9b.c | ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme9b | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme9b.c | . 2 ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
2 | hllat 39344 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝐾 ∈ Lat) |
4 | cdleme9b.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | cdleme9b.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
6 | cdleme9b.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 4, 5, 6 | hlatjcl 39348 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ 𝐵) |
8 | 7 | 3adant3r3 1183 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → (𝑃 ∨ 𝑆) ∈ 𝐵) |
9 | simpr3 1195 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝑊 ∈ 𝐻) | |
10 | cdleme9b.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | 4, 10 | lhpbase 39980 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝑊 ∈ 𝐵) |
13 | cdleme9b.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
14 | 4, 13 | latmcl 18497 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ 𝐵) |
15 | 3, 8, 12, 14 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ 𝐵) |
16 | 1, 15 | eqeltrid 2842 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝐶 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 joincjn 18368 meetcmee 18369 Latclat 18488 Atomscatm 39244 HLchlt 39331 LHypclh 39966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-lat 18489 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-lhyp 39970 |
This theorem is referenced by: cdleme15b 40257 cdleme17b 40269 |
Copyright terms: Public domain | W3C validator |