Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9b Structured version   Visualization version   GIF version

Theorem cdleme9b 38003
Description: Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.)
Hypotheses
Ref Expression
cdleme9b.b 𝐵 = (Base‘𝐾)
cdleme9b.j = (join‘𝐾)
cdleme9b.m = (meet‘𝐾)
cdleme9b.a 𝐴 = (Atoms‘𝐾)
cdleme9b.h 𝐻 = (LHyp‘𝐾)
cdleme9b.c 𝐶 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
cdleme9b ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶𝐵)

Proof of Theorem cdleme9b
StepHypRef Expression
1 cdleme9b.c . 2 𝐶 = ((𝑃 𝑆) 𝑊)
2 hllat 37114 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32adantr 484 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐾 ∈ Lat)
4 cdleme9b.b . . . . 5 𝐵 = (Base‘𝐾)
5 cdleme9b.j . . . . 5 = (join‘𝐾)
6 cdleme9b.a . . . . 5 𝐴 = (Atoms‘𝐾)
74, 5, 6hlatjcl 37118 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ 𝐵)
873adant3r3 1186 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → (𝑃 𝑆) ∈ 𝐵)
9 simpr3 1198 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝑊𝐻)
10 cdleme9b.h . . . . 5 𝐻 = (LHyp‘𝐾)
114, 10lhpbase 37749 . . . 4 (𝑊𝐻𝑊𝐵)
129, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝑊𝐵)
13 cdleme9b.m . . . 4 = (meet‘𝐾)
144, 13latmcl 17946 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑆) 𝑊) ∈ 𝐵)
153, 8, 12, 14syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → ((𝑃 𝑆) 𝑊) ∈ 𝐵)
161, 15eqeltrid 2842 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  Basecbs 16760  joincjn 17818  meetcmee 17819  Latclat 17937  Atomscatm 37014  HLchlt 37101  LHypclh 37735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-lat 17938  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-lhyp 37739
This theorem is referenced by:  cdleme15b  38026  cdleme17b  38038
  Copyright terms: Public domain W3C validator