Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9b Structured version   Visualization version   GIF version

Theorem cdleme9b 40209
Description: Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.)
Hypotheses
Ref Expression
cdleme9b.b 𝐵 = (Base‘𝐾)
cdleme9b.j = (join‘𝐾)
cdleme9b.m = (meet‘𝐾)
cdleme9b.a 𝐴 = (Atoms‘𝐾)
cdleme9b.h 𝐻 = (LHyp‘𝐾)
cdleme9b.c 𝐶 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
cdleme9b ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶𝐵)

Proof of Theorem cdleme9b
StepHypRef Expression
1 cdleme9b.c . 2 𝐶 = ((𝑃 𝑆) 𝑊)
2 hllat 39319 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32adantr 480 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐾 ∈ Lat)
4 cdleme9b.b . . . . 5 𝐵 = (Base‘𝐾)
5 cdleme9b.j . . . . 5 = (join‘𝐾)
6 cdleme9b.a . . . . 5 𝐴 = (Atoms‘𝐾)
74, 5, 6hlatjcl 39323 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ 𝐵)
873adant3r3 1184 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → (𝑃 𝑆) ∈ 𝐵)
9 simpr3 1196 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝑊𝐻)
10 cdleme9b.h . . . . 5 𝐻 = (LHyp‘𝐾)
114, 10lhpbase 39955 . . . 4 (𝑊𝐻𝑊𝐵)
129, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝑊𝐵)
13 cdleme9b.m . . . 4 = (meet‘𝐾)
144, 13latmcl 18510 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑆) 𝑊) ∈ 𝐵)
153, 8, 12, 14syl3anc 1371 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → ((𝑃 𝑆) 𝑊) ∈ 𝐵)
161, 15eqeltrid 2848 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  joincjn 18381  meetcmee 18382  Latclat 18501  Atomscatm 39219  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-lat 18502  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945
This theorem is referenced by:  cdleme15b  40232  cdleme17b  40244
  Copyright terms: Public domain W3C validator