| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme9b | Structured version Visualization version GIF version | ||
| Description: Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.) |
| Ref | Expression |
|---|---|
| cdleme9b.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdleme9b.j | ⊢ ∨ = (join‘𝐾) |
| cdleme9b.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme9b.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme9b.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme9b.c | ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
| Ref | Expression |
|---|---|
| cdleme9b | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme9b.c | . 2 ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
| 2 | hllat 39381 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝐾 ∈ Lat) |
| 4 | cdleme9b.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | cdleme9b.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 6 | cdleme9b.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 4, 5, 6 | hlatjcl 39385 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ 𝐵) |
| 8 | 7 | 3adant3r3 1185 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → (𝑃 ∨ 𝑆) ∈ 𝐵) |
| 9 | simpr3 1197 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝑊 ∈ 𝐻) | |
| 10 | cdleme9b.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 11 | 4, 10 | lhpbase 40017 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝑊 ∈ 𝐵) |
| 13 | cdleme9b.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 14 | 4, 13 | latmcl 18450 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ 𝐵) |
| 15 | 3, 8, 12, 14 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ 𝐵) |
| 16 | 1, 15 | eqeltrid 2838 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝐶 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 joincjn 18323 meetcmee 18324 Latclat 18441 Atomscatm 39281 HLchlt 39368 LHypclh 40003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-lat 18442 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-lhyp 40007 |
| This theorem is referenced by: cdleme15b 40294 cdleme17b 40306 |
| Copyright terms: Public domain | W3C validator |