| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme9a | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐶 represents s1, which we prove is an atom. (Contributed by NM, 10-Jun-2012.) |
| Ref | Expression |
|---|---|
| cdleme8.l | ⊢ ≤ = (le‘𝐾) |
| cdleme8.j | ⊢ ∨ = (join‘𝐾) |
| cdleme8.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme8.4 | ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
| Ref | Expression |
|---|---|
| cdleme9a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑆)) → 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme8.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdleme8.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 3 | cdleme8.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | cdleme8.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdleme8.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdleme8.4 | . 2 ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | lhpat2 39985 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑆)) → 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 lecple 17263 joincjn 18308 meetcmee 18309 Atomscatm 39202 HLchlt 39289 LHypclh 39924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-proset 18291 df-poset 18310 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-oposet 39115 df-ol 39117 df-oml 39118 df-covers 39205 df-ats 39206 df-atl 39237 df-cvlat 39261 df-hlat 39290 df-lhyp 39928 |
| This theorem is referenced by: cdleme9 40193 cdleme9taN 40196 cdleme11h 40206 cdleme11j 40207 cdleme11k 40208 cdleme17c 40228 |
| Copyright terms: Public domain | W3C validator |