Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeqf Structured version   Visualization version   GIF version

Theorem climeqf 43119
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeqf.p 𝑘𝜑
climeqf.k 𝑘𝐹
climeqf.n 𝑘𝐺
climeqf.m (𝜑𝑀 ∈ ℤ)
climeqf.z 𝑍 = (ℤ𝑀)
climeqf.f (𝜑𝐹𝑉)
climeqf.g (𝜑𝐺𝑊)
climeqf.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeqf (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeqf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeqf.z . 2 𝑍 = (ℤ𝑀)
2 climeqf.f . 2 (𝜑𝐹𝑉)
3 climeqf.g . 2 (𝜑𝐺𝑊)
4 climeqf.m . 2 (𝜑𝑀 ∈ ℤ)
5 climeqf.p . . . . 5 𝑘𝜑
6 nfv 1918 . . . . 5 𝑘 𝑗𝑍
75, 6nfan 1903 . . . 4 𝑘(𝜑𝑗𝑍)
8 climeqf.k . . . . . 6 𝑘𝐹
9 nfcv 2906 . . . . . 6 𝑘𝑗
108, 9nffv 6766 . . . . 5 𝑘(𝐹𝑗)
11 climeqf.n . . . . . 6 𝑘𝐺
1211, 9nffv 6766 . . . . 5 𝑘(𝐺𝑗)
1310, 12nfeq 2919 . . . 4 𝑘(𝐹𝑗) = (𝐺𝑗)
147, 13nfim 1900 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
15 eleq1w 2821 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 628 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 fveq2 6756 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
18 fveq2 6756 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
1917, 18eqeq12d 2754 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2016, 19imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))))
21 climeqf.e . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
2214, 20, 21chvarfv 2236 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
231, 2, 3, 4, 22climeq 15204 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886   class class class wbr 5070  cfv 6418  cz 12249  cuz 12511  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-neg 11138  df-z 12250  df-uz 12512  df-clim 15125
This theorem is referenced by:  climeqmpt  43128
  Copyright terms: Public domain W3C validator