Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeqf | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climeqf.p | ⊢ Ⅎ𝑘𝜑 |
climeqf.k | ⊢ Ⅎ𝑘𝐹 |
climeqf.n | ⊢ Ⅎ𝑘𝐺 |
climeqf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeqf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeqf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climeqf.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climeqf.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climeqf | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeqf.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climeqf.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | climeqf.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
4 | climeqf.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climeqf.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
6 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
7 | 5, 6 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
8 | climeqf.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
9 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
10 | 8, 9 | nffv 6784 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
11 | climeqf.n | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
12 | 11, 9 | nffv 6784 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
13 | 10, 12 | nfeq 2920 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
14 | 7, 13 | nfim 1899 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
15 | eleq1w 2821 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 629 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | fveq2 6774 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
18 | fveq2 6774 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
19 | 17, 18 | eqeq12d 2754 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
20 | 16, 19 | imbi12d 345 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
21 | climeqf.e | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
22 | 14, 20, 21 | chvarfv 2233 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
23 | 1, 2, 3, 4, 22 | climeq 15276 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 class class class wbr 5074 ‘cfv 6433 ℤcz 12319 ℤ≥cuz 12582 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-z 12320 df-uz 12583 df-clim 15197 |
This theorem is referenced by: climeqmpt 43238 |
Copyright terms: Public domain | W3C validator |