![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeqf | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climeqf.p | ⊢ Ⅎ𝑘𝜑 |
climeqf.k | ⊢ Ⅎ𝑘𝐹 |
climeqf.n | ⊢ Ⅎ𝑘𝐺 |
climeqf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeqf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeqf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climeqf.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climeqf.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climeqf | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeqf.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climeqf.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | climeqf.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
4 | climeqf.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climeqf.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
6 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
7 | 5, 6 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
8 | climeqf.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
9 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
10 | 8, 9 | nffv 6894 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
11 | climeqf.n | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
12 | 11, 9 | nffv 6894 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
13 | 10, 12 | nfeq 2910 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
14 | 7, 13 | nfim 1891 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
15 | eleq1w 2810 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 628 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | fveq2 6884 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
18 | fveq2 6884 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
19 | 17, 18 | eqeq12d 2742 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
20 | 16, 19 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
21 | climeqf.e | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
22 | 14, 20, 21 | chvarfv 2225 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
23 | 1, 2, 3, 4, 22 | climeq 15514 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2877 class class class wbr 5141 ‘cfv 6536 ℤcz 12559 ℤ≥cuz 12823 ⇝ cli 15431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-neg 11448 df-z 12560 df-uz 12824 df-clim 15435 |
This theorem is referenced by: climeqmpt 44967 |
Copyright terms: Public domain | W3C validator |