Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeqf Structured version   Visualization version   GIF version

Theorem climeqf 45686
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeqf.p 𝑘𝜑
climeqf.k 𝑘𝐹
climeqf.n 𝑘𝐺
climeqf.m (𝜑𝑀 ∈ ℤ)
climeqf.z 𝑍 = (ℤ𝑀)
climeqf.f (𝜑𝐹𝑉)
climeqf.g (𝜑𝐺𝑊)
climeqf.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeqf (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeqf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeqf.z . 2 𝑍 = (ℤ𝑀)
2 climeqf.f . 2 (𝜑𝐹𝑉)
3 climeqf.g . 2 (𝜑𝐺𝑊)
4 climeqf.m . 2 (𝜑𝑀 ∈ ℤ)
5 climeqf.p . . . . 5 𝑘𝜑
6 nfv 1914 . . . . 5 𝑘 𝑗𝑍
75, 6nfan 1899 . . . 4 𝑘(𝜑𝑗𝑍)
8 climeqf.k . . . . . 6 𝑘𝐹
9 nfcv 2891 . . . . . 6 𝑘𝑗
108, 9nffv 6868 . . . . 5 𝑘(𝐹𝑗)
11 climeqf.n . . . . . 6 𝑘𝐺
1211, 9nffv 6868 . . . . 5 𝑘(𝐺𝑗)
1310, 12nfeq 2905 . . . 4 𝑘(𝐹𝑗) = (𝐺𝑗)
147, 13nfim 1896 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
15 eleq1w 2811 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 fveq2 6858 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
18 fveq2 6858 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
1917, 18eqeq12d 2745 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2016, 19imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))))
21 climeqf.e . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
2214, 20, 21chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
231, 2, 3, 4, 22climeq 15533 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876   class class class wbr 5107  cfv 6511  cz 12529  cuz 12793  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794  df-clim 15454
This theorem is referenced by:  climeqmpt  45695
  Copyright terms: Public domain W3C validator