Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeqf | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climeqf.p | ⊢ Ⅎ𝑘𝜑 |
climeqf.k | ⊢ Ⅎ𝑘𝐹 |
climeqf.n | ⊢ Ⅎ𝑘𝐺 |
climeqf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeqf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeqf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climeqf.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climeqf.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climeqf | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeqf.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climeqf.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | climeqf.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
4 | climeqf.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climeqf.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
6 | nfv 1916 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
7 | 5, 6 | nfan 1901 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
8 | climeqf.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
9 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
10 | 8, 9 | nffv 6822 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
11 | climeqf.n | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
12 | 11, 9 | nffv 6822 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
13 | 10, 12 | nfeq 2918 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
14 | 7, 13 | nfim 1898 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
15 | eleq1w 2820 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 629 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | fveq2 6812 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
18 | fveq2 6812 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
19 | 17, 18 | eqeq12d 2753 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
20 | 16, 19 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
21 | climeqf.e | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
22 | 14, 20, 21 | chvarfv 2232 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
23 | 1, 2, 3, 4, 22 | climeq 15355 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2885 class class class wbr 5087 ‘cfv 6466 ℤcz 12399 ℤ≥cuz 12662 ⇝ cli 15272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-pre-lttri 11025 ax-pre-lttrn 11026 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-neg 11288 df-z 12400 df-uz 12663 df-clim 15276 |
This theorem is referenced by: climeqmpt 43488 |
Copyright terms: Public domain | W3C validator |