| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climeqf | Structured version Visualization version GIF version | ||
| Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| climeqf.p | ⊢ Ⅎ𝑘𝜑 |
| climeqf.k | ⊢ Ⅎ𝑘𝐹 |
| climeqf.n | ⊢ Ⅎ𝑘𝐺 |
| climeqf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climeqf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climeqf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climeqf.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| climeqf.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| Ref | Expression |
|---|---|
| climeqf | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climeqf.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climeqf.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | climeqf.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 4 | climeqf.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | climeqf.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 6 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 7 | 5, 6 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 8 | climeqf.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 9 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 10 | 8, 9 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 11 | climeqf.n | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
| 12 | 11, 9 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
| 13 | 10, 12 | nfeq 2905 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
| 14 | 7, 13 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
| 15 | eleq1w 2811 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 16 | 15 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 17 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 18 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
| 19 | 17, 18 | eqeq12d 2745 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
| 20 | 16, 19 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
| 21 | climeqf.e | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 22 | 14, 20, 21 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
| 23 | 1, 2, 3, 4, 22 | climeq 15474 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 class class class wbr 5092 ‘cfv 6482 ℤcz 12471 ℤ≥cuz 12735 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-neg 11350 df-z 12472 df-uz 12736 df-clim 15395 |
| This theorem is referenced by: climeqmpt 45698 |
| Copyright terms: Public domain | W3C validator |