Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeqf Structured version   Visualization version   GIF version

Theorem climeqf 45785
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeqf.p 𝑘𝜑
climeqf.k 𝑘𝐹
climeqf.n 𝑘𝐺
climeqf.m (𝜑𝑀 ∈ ℤ)
climeqf.z 𝑍 = (ℤ𝑀)
climeqf.f (𝜑𝐹𝑉)
climeqf.g (𝜑𝐺𝑊)
climeqf.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeqf (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeqf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeqf.z . 2 𝑍 = (ℤ𝑀)
2 climeqf.f . 2 (𝜑𝐹𝑉)
3 climeqf.g . 2 (𝜑𝐺𝑊)
4 climeqf.m . 2 (𝜑𝑀 ∈ ℤ)
5 climeqf.p . . . . 5 𝑘𝜑
6 nfv 1915 . . . . 5 𝑘 𝑗𝑍
75, 6nfan 1900 . . . 4 𝑘(𝜑𝑗𝑍)
8 climeqf.k . . . . . 6 𝑘𝐹
9 nfcv 2894 . . . . . 6 𝑘𝑗
108, 9nffv 6832 . . . . 5 𝑘(𝐹𝑗)
11 climeqf.n . . . . . 6 𝑘𝐺
1211, 9nffv 6832 . . . . 5 𝑘(𝐺𝑗)
1310, 12nfeq 2908 . . . 4 𝑘(𝐹𝑗) = (𝐺𝑗)
147, 13nfim 1897 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
15 eleq1w 2814 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 fveq2 6822 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
18 fveq2 6822 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
1917, 18eqeq12d 2747 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2016, 19imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))))
21 climeqf.e . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
2214, 20, 21chvarfv 2243 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
231, 2, 3, 4, 22climeq 15474 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879   class class class wbr 5089  cfv 6481  cz 12468  cuz 12732  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-neg 11347  df-z 12469  df-uz 12733  df-clim 15395
This theorem is referenced by:  climeqmpt  45794
  Copyright terms: Public domain W3C validator