| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climeqmpt | Structured version Visualization version GIF version | ||
| Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| climeqmpt.x | ⊢ Ⅎ𝑥𝜑 |
| climeqmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| climeqmpt.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| climeqmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climeqmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climeqmpt.s | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
| climeqmpt.t | ⊢ (𝜑 → 𝑍 ⊆ 𝐵) |
| climeqmpt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| climeqmpt | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝ 𝐷 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climeqmpt.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfmpt1 5206 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 3 | nfmpt1 5206 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 4 | climeqmpt.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | climeqmpt.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | climeqmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | 6 | mptexd 7198 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) |
| 8 | climeqmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 9 | 8 | mptexd 7198 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| 10 | climeqmpt.s | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑍 ⊆ 𝐴) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝑍) | |
| 13 | 11, 12 | sseldd 3947 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
| 14 | climeqmpt.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 ∈ 𝑈) | |
| 15 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 16 | 15 | fvmpt2 6979 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑈) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
| 17 | 13, 14, 16 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
| 18 | climeqmpt.t | . . . . . . 7 ⊢ (𝜑 → 𝑍 ⊆ 𝐵) | |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑍 ⊆ 𝐵) |
| 20 | 19, 12 | sseldd 3947 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝐵) |
| 21 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 22 | 21 | fvmpt2 6979 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = 𝐶) |
| 23 | 20, 14, 22 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = 𝐶) |
| 24 | 23 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥)) |
| 25 | 17, 24 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥)) |
| 26 | 1, 2, 3, 4, 5, 7, 9, 25 | climeqf 45686 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝ 𝐷 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 ℤcz 12529 ℤ≥cuz 12793 ⇝ cli 15450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 df-clim 15454 |
| This theorem is referenced by: smflimsuplem6 46823 smflimsuplem8 46825 |
| Copyright terms: Public domain | W3C validator |