Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeqmpt Structured version   Visualization version   GIF version

Theorem climeqmpt 45702
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeqmpt.x 𝑥𝜑
climeqmpt.a (𝜑𝐴𝑉)
climeqmpt.b (𝜑𝐵𝑊)
climeqmpt.m (𝜑𝑀 ∈ ℤ)
climeqmpt.z 𝑍 = (ℤ𝑀)
climeqmpt.s (𝜑𝑍𝐴)
climeqmpt.t (𝜑𝑍𝐵)
climeqmpt.c ((𝜑𝑥𝑍) → 𝐶𝑈)
Assertion
Ref Expression
climeqmpt (𝜑 → ((𝑥𝐴𝐶) ⇝ 𝐷 ↔ (𝑥𝐵𝐶) ⇝ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑈(𝑥)   𝑀(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem climeqmpt
StepHypRef Expression
1 climeqmpt.x . 2 𝑥𝜑
2 nfmpt1 5209 . 2 𝑥(𝑥𝐴𝐶)
3 nfmpt1 5209 . 2 𝑥(𝑥𝐵𝐶)
4 climeqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climeqmpt.z . 2 𝑍 = (ℤ𝑀)
6 climeqmpt.a . . 3 (𝜑𝐴𝑉)
76mptexd 7201 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ V)
8 climeqmpt.b . . 3 (𝜑𝐵𝑊)
98mptexd 7201 . 2 (𝜑 → (𝑥𝐵𝐶) ∈ V)
10 climeqmpt.s . . . . . 6 (𝜑𝑍𝐴)
1110adantr 480 . . . . 5 ((𝜑𝑥𝑍) → 𝑍𝐴)
12 simpr 484 . . . . 5 ((𝜑𝑥𝑍) → 𝑥𝑍)
1311, 12sseldd 3950 . . . 4 ((𝜑𝑥𝑍) → 𝑥𝐴)
14 climeqmpt.c . . . 4 ((𝜑𝑥𝑍) → 𝐶𝑈)
15 eqid 2730 . . . . 5 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1615fvmpt2 6982 . . . 4 ((𝑥𝐴𝐶𝑈) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
1713, 14, 16syl2anc 584 . . 3 ((𝜑𝑥𝑍) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
18 climeqmpt.t . . . . . . 7 (𝜑𝑍𝐵)
1918adantr 480 . . . . . 6 ((𝜑𝑥𝑍) → 𝑍𝐵)
2019, 12sseldd 3950 . . . . 5 ((𝜑𝑥𝑍) → 𝑥𝐵)
21 eqid 2730 . . . . . 6 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
2221fvmpt2 6982 . . . . 5 ((𝑥𝐵𝐶𝑈) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
2320, 14, 22syl2anc 584 . . . 4 ((𝜑𝑥𝑍) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
2423eqcomd 2736 . . 3 ((𝜑𝑥𝑍) → 𝐶 = ((𝑥𝐵𝐶)‘𝑥))
2517, 24eqtrd 2765 . 2 ((𝜑𝑥𝑍) → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐵𝐶)‘𝑥))
261, 2, 3, 4, 5, 7, 9, 25climeqf 45693 1 (𝜑 → ((𝑥𝐴𝐶) ⇝ 𝐷 ↔ (𝑥𝐵𝐶) ⇝ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  cfv 6514  cz 12536  cuz 12800  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801  df-clim 15461
This theorem is referenced by:  smflimsuplem6  46830  smflimsuplem8  46832
  Copyright terms: Public domain W3C validator