![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeqmpt | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climeqmpt.x | ⊢ Ⅎ𝑥𝜑 |
climeqmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
climeqmpt.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
climeqmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeqmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeqmpt.s | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
climeqmpt.t | ⊢ (𝜑 → 𝑍 ⊆ 𝐵) |
climeqmpt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
climeqmpt | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝ 𝐷 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeqmpt.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfmpt1 4982 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) | |
3 | nfmpt1 4982 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐵 ↦ 𝐶) | |
4 | climeqmpt.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climeqmpt.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climeqmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | 6 | mptexd 6759 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) |
8 | climeqmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
9 | 8 | mptexd 6759 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ V) |
10 | climeqmpt.s | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
11 | 10 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑍 ⊆ 𝐴) |
12 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝑍) | |
13 | 11, 12 | sseldd 3821 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
14 | climeqmpt.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 ∈ 𝑈) | |
15 | eqid 2777 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
16 | 15 | fvmpt2 6552 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑈) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
17 | 13, 14, 16 | syl2anc 579 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
18 | climeqmpt.t | . . . . . . 7 ⊢ (𝜑 → 𝑍 ⊆ 𝐵) | |
19 | 18 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑍 ⊆ 𝐵) |
20 | 19, 12 | sseldd 3821 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝐵) |
21 | eqid 2777 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
22 | 21 | fvmpt2 6552 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = 𝐶) |
23 | 20, 14, 22 | syl2anc 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = 𝐶) |
24 | 23 | eqcomd 2783 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥)) |
25 | 17, 24 | eqtrd 2813 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥)) |
26 | 1, 2, 3, 4, 5, 7, 9, 25 | climeqf 40821 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝ 𝐷 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 Ⅎwnf 1827 ∈ wcel 2106 Vcvv 3397 ⊆ wss 3791 class class class wbr 4886 ↦ cmpt 4965 ‘cfv 6135 ℤcz 11728 ℤ≥cuz 11992 ⇝ cli 14623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-pre-lttri 10346 ax-pre-lttrn 10347 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-neg 10609 df-z 11729 df-uz 11993 df-clim 14627 |
This theorem is referenced by: smflimsuplem6 41951 smflimsuplem8 41953 |
Copyright terms: Public domain | W3C validator |