Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeqmpt Structured version   Visualization version   GIF version

Theorem climeqmpt 45668
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeqmpt.x 𝑥𝜑
climeqmpt.a (𝜑𝐴𝑉)
climeqmpt.b (𝜑𝐵𝑊)
climeqmpt.m (𝜑𝑀 ∈ ℤ)
climeqmpt.z 𝑍 = (ℤ𝑀)
climeqmpt.s (𝜑𝑍𝐴)
climeqmpt.t (𝜑𝑍𝐵)
climeqmpt.c ((𝜑𝑥𝑍) → 𝐶𝑈)
Assertion
Ref Expression
climeqmpt (𝜑 → ((𝑥𝐴𝐶) ⇝ 𝐷 ↔ (𝑥𝐵𝐶) ⇝ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑈(𝑥)   𝑀(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem climeqmpt
StepHypRef Expression
1 climeqmpt.x . 2 𝑥𝜑
2 nfmpt1 5201 . 2 𝑥(𝑥𝐴𝐶)
3 nfmpt1 5201 . 2 𝑥(𝑥𝐵𝐶)
4 climeqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climeqmpt.z . 2 𝑍 = (ℤ𝑀)
6 climeqmpt.a . . 3 (𝜑𝐴𝑉)
76mptexd 7180 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ V)
8 climeqmpt.b . . 3 (𝜑𝐵𝑊)
98mptexd 7180 . 2 (𝜑 → (𝑥𝐵𝐶) ∈ V)
10 climeqmpt.s . . . . . 6 (𝜑𝑍𝐴)
1110adantr 480 . . . . 5 ((𝜑𝑥𝑍) → 𝑍𝐴)
12 simpr 484 . . . . 5 ((𝜑𝑥𝑍) → 𝑥𝑍)
1311, 12sseldd 3944 . . . 4 ((𝜑𝑥𝑍) → 𝑥𝐴)
14 climeqmpt.c . . . 4 ((𝜑𝑥𝑍) → 𝐶𝑈)
15 eqid 2729 . . . . 5 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1615fvmpt2 6961 . . . 4 ((𝑥𝐴𝐶𝑈) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
1713, 14, 16syl2anc 584 . . 3 ((𝜑𝑥𝑍) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
18 climeqmpt.t . . . . . . 7 (𝜑𝑍𝐵)
1918adantr 480 . . . . . 6 ((𝜑𝑥𝑍) → 𝑍𝐵)
2019, 12sseldd 3944 . . . . 5 ((𝜑𝑥𝑍) → 𝑥𝐵)
21 eqid 2729 . . . . . 6 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
2221fvmpt2 6961 . . . . 5 ((𝑥𝐵𝐶𝑈) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
2320, 14, 22syl2anc 584 . . . 4 ((𝜑𝑥𝑍) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
2423eqcomd 2735 . . 3 ((𝜑𝑥𝑍) → 𝐶 = ((𝑥𝐵𝐶)‘𝑥))
2517, 24eqtrd 2764 . 2 ((𝜑𝑥𝑍) → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐵𝐶)‘𝑥))
261, 2, 3, 4, 5, 7, 9, 25climeqf 45659 1 (𝜑 → ((𝑥𝐴𝐶) ⇝ 𝐷 ↔ (𝑥𝐵𝐶) ⇝ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183  cfv 6499  cz 12505  cuz 12769  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-neg 11384  df-z 12506  df-uz 12770  df-clim 15430
This theorem is referenced by:  smflimsuplem6  46796  smflimsuplem8  46798
  Copyright terms: Public domain W3C validator