Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeqmpt Structured version   Visualization version   GIF version

Theorem climeqmpt 42339
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeqmpt.x 𝑥𝜑
climeqmpt.a (𝜑𝐴𝑉)
climeqmpt.b (𝜑𝐵𝑊)
climeqmpt.m (𝜑𝑀 ∈ ℤ)
climeqmpt.z 𝑍 = (ℤ𝑀)
climeqmpt.s (𝜑𝑍𝐴)
climeqmpt.t (𝜑𝑍𝐵)
climeqmpt.c ((𝜑𝑥𝑍) → 𝐶𝑈)
Assertion
Ref Expression
climeqmpt (𝜑 → ((𝑥𝐴𝐶) ⇝ 𝐷 ↔ (𝑥𝐵𝐶) ⇝ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑈(𝑥)   𝑀(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem climeqmpt
StepHypRef Expression
1 climeqmpt.x . 2 𝑥𝜑
2 nfmpt1 5128 . 2 𝑥(𝑥𝐴𝐶)
3 nfmpt1 5128 . 2 𝑥(𝑥𝐵𝐶)
4 climeqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climeqmpt.z . 2 𝑍 = (ℤ𝑀)
6 climeqmpt.a . . 3 (𝜑𝐴𝑉)
76mptexd 6964 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ V)
8 climeqmpt.b . . 3 (𝜑𝐵𝑊)
98mptexd 6964 . 2 (𝜑 → (𝑥𝐵𝐶) ∈ V)
10 climeqmpt.s . . . . . 6 (𝜑𝑍𝐴)
1110adantr 484 . . . . 5 ((𝜑𝑥𝑍) → 𝑍𝐴)
12 simpr 488 . . . . 5 ((𝜑𝑥𝑍) → 𝑥𝑍)
1311, 12sseldd 3916 . . . 4 ((𝜑𝑥𝑍) → 𝑥𝐴)
14 climeqmpt.c . . . 4 ((𝜑𝑥𝑍) → 𝐶𝑈)
15 eqid 2798 . . . . 5 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1615fvmpt2 6756 . . . 4 ((𝑥𝐴𝐶𝑈) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
1713, 14, 16syl2anc 587 . . 3 ((𝜑𝑥𝑍) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
18 climeqmpt.t . . . . . . 7 (𝜑𝑍𝐵)
1918adantr 484 . . . . . 6 ((𝜑𝑥𝑍) → 𝑍𝐵)
2019, 12sseldd 3916 . . . . 5 ((𝜑𝑥𝑍) → 𝑥𝐵)
21 eqid 2798 . . . . . 6 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
2221fvmpt2 6756 . . . . 5 ((𝑥𝐵𝐶𝑈) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
2320, 14, 22syl2anc 587 . . . 4 ((𝜑𝑥𝑍) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
2423eqcomd 2804 . . 3 ((𝜑𝑥𝑍) → 𝐶 = ((𝑥𝐵𝐶)‘𝑥))
2517, 24eqtrd 2833 . 2 ((𝜑𝑥𝑍) → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐵𝐶)‘𝑥))
261, 2, 3, 4, 5, 7, 9, 25climeqf 42330 1 (𝜑 → ((𝑥𝐴𝐶) ⇝ 𝐷 ↔ (𝑥𝐵𝐶) ⇝ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  wcel 2111  Vcvv 3441  wss 3881   class class class wbr 5030  cmpt 5110  cfv 6324  cz 11969  cuz 12231  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-z 11970  df-uz 12232  df-clim 14837
This theorem is referenced by:  smflimsuplem6  43456  smflimsuplem8  43458
  Copyright terms: Public domain W3C validator