Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeqmpt | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climeqmpt.x | ⊢ Ⅎ𝑥𝜑 |
climeqmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
climeqmpt.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
climeqmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeqmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeqmpt.s | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
climeqmpt.t | ⊢ (𝜑 → 𝑍 ⊆ 𝐵) |
climeqmpt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
climeqmpt | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝ 𝐷 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeqmpt.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfmpt1 5178 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) | |
3 | nfmpt1 5178 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐵 ↦ 𝐶) | |
4 | climeqmpt.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climeqmpt.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climeqmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | 6 | mptexd 7082 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) |
8 | climeqmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
9 | 8 | mptexd 7082 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ V) |
10 | climeqmpt.s | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑍 ⊆ 𝐴) |
12 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝑍) | |
13 | 11, 12 | sseldd 3918 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
14 | climeqmpt.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 ∈ 𝑈) | |
15 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
16 | 15 | fvmpt2 6868 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑈) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
17 | 13, 14, 16 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
18 | climeqmpt.t | . . . . . . 7 ⊢ (𝜑 → 𝑍 ⊆ 𝐵) | |
19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑍 ⊆ 𝐵) |
20 | 19, 12 | sseldd 3918 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝐵) |
21 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
22 | 21 | fvmpt2 6868 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = 𝐶) |
23 | 20, 14, 22 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = 𝐶) |
24 | 23 | eqcomd 2744 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥)) |
25 | 17, 24 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥)) |
26 | 1, 2, 3, 4, 5, 7, 9, 25 | climeqf 43119 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝ 𝐷 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 ℤcz 12249 ℤ≥cuz 12511 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 df-clim 15125 |
This theorem is referenced by: smflimsuplem6 44245 smflimsuplem8 44247 |
Copyright terms: Public domain | W3C validator |