| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climeq | Structured version Visualization version GIF version | ||
| Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climeq.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climeq.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climeq.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| climeq.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climeq.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| Ref | Expression |
|---|---|
| climeq | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climeq.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climeq.5 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climeq.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | climeq.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 5 | 1, 2, 3, 4 | clim2 15411 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑦)((𝐺‘𝑘) ∈ ℂ ∧ (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑥)))) |
| 6 | climeq.3 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 7 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐺‘𝑘)) | |
| 8 | 1, 2, 6, 7 | clim2 15411 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑦)((𝐺‘𝑘) ∈ ℂ ∧ (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑥)))) |
| 9 | 5, 8 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 < clt 11146 − cmin 11344 ℤcz 12468 ℤ≥cuz 12732 ℝ+crp 12890 abscabs 15141 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 df-clim 15395 |
| This theorem is referenced by: climmpt 15478 climres 15482 climshft 15483 climshft2 15489 isumclim3 15666 iprodclim3 15907 logtayl 26596 dfef2 26908 climexp 45653 climeldmeq 45711 climfveq 45715 climfveqf 45726 climeqf 45734 stirlinglem14 46133 fourierdlem112 46264 vonioolem1 46726 |
| Copyright terms: Public domain | W3C validator |