Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climeq | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climeq.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeq.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climeq.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climeq.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeq.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climeq | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeq.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climeq.5 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climeq.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | climeq.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
5 | 1, 2, 3, 4 | clim2 15223 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑦)((𝐺‘𝑘) ∈ ℂ ∧ (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑥)))) |
6 | climeq.3 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
7 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐺‘𝑘)) | |
8 | 1, 2, 6, 7 | clim2 15223 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑦)((𝐺‘𝑘) ∈ ℂ ∧ (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑥)))) |
9 | 5, 8 | bitr4d 281 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 ℂcc 10879 < clt 11019 − cmin 11215 ℤcz 12329 ℤ≥cuz 12592 ℝ+crp 12740 abscabs 14955 ⇝ cli 15203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-pre-lttri 10955 ax-pre-lttrn 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-po 5498 df-so 5499 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-neg 11218 df-z 12330 df-uz 12593 df-clim 15207 |
This theorem is referenced by: climmpt 15290 climres 15294 climshft 15295 climshft2 15301 isumclim3 15481 iprodclim3 15720 logtayl 25825 dfef2 26130 climexp 43127 climeldmeq 43187 climfveq 43191 climfveqf 43202 climeqf 43210 stirlinglem14 43609 fourierdlem112 43740 vonioolem1 44199 |
Copyright terms: Public domain | W3C validator |