| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climeq | Structured version Visualization version GIF version | ||
| Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climeq.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climeq.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climeq.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| climeq.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climeq.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| Ref | Expression |
|---|---|
| climeq | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climeq.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climeq.5 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climeq.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | climeq.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 5 | 1, 2, 3, 4 | clim2 15477 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑦)((𝐺‘𝑘) ∈ ℂ ∧ (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑥)))) |
| 6 | climeq.3 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 7 | eqidd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐺‘𝑘)) | |
| 8 | 1, 2, 6, 7 | clim2 15477 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑦)((𝐺‘𝑘) ∈ ℂ ∧ (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑥)))) |
| 9 | 5, 8 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 < clt 11215 − cmin 11412 ℤcz 12536 ℤ≥cuz 12800 ℝ+crp 12958 abscabs 15207 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 df-clim 15461 |
| This theorem is referenced by: climmpt 15544 climres 15548 climshft 15549 climshft2 15555 isumclim3 15732 iprodclim3 15973 logtayl 26576 dfef2 26888 climexp 45610 climeldmeq 45670 climfveq 45674 climfveqf 45685 climeqf 45693 stirlinglem14 46092 fourierdlem112 46223 vonioolem1 46685 |
| Copyright terms: Public domain | W3C validator |