![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climeq | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climeq.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeq.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climeq.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climeq.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeq.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climeq | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeq.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climeq.5 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climeq.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | climeq.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
5 | 1, 2, 3, 4 | clim2 15537 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑦)((𝐺‘𝑘) ∈ ℂ ∧ (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑥)))) |
6 | climeq.3 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
7 | eqidd 2736 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐺‘𝑘)) | |
8 | 1, 2, 6, 7 | clim2 15537 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑦)((𝐺‘𝑘) ∈ ℂ ∧ (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑥)))) |
9 | 5, 8 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 < clt 11293 − cmin 11490 ℤcz 12611 ℤ≥cuz 12876 ℝ+crp 13032 abscabs 15270 ⇝ cli 15517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-neg 11493 df-z 12612 df-uz 12877 df-clim 15521 |
This theorem is referenced by: climmpt 15604 climres 15608 climshft 15609 climshft2 15615 isumclim3 15792 iprodclim3 16033 logtayl 26717 dfef2 27029 climexp 45561 climeldmeq 45621 climfveq 45625 climfveqf 45636 climeqf 45644 stirlinglem14 46043 fourierdlem112 46174 vonioolem1 46636 |
Copyright terms: Public domain | W3C validator |