![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climbddf | Structured version Visualization version GIF version |
Description: A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climbddf.1 | ⊢ Ⅎ𝑘𝐹 |
climbddf.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
climbddf | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → 𝑀 ∈ ℤ) | |
2 | simp2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → 𝐹 ∈ dom ⇝ ) | |
3 | nfv 1910 | . . . . . 6 ⊢ Ⅎ𝑗(𝐹‘𝑘) ∈ ℂ | |
4 | climbddf.1 | . . . . . . . 8 ⊢ Ⅎ𝑘𝐹 | |
5 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
6 | 4, 5 | nffv 6911 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
7 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑘ℂ | |
8 | 6, 7 | nfel 2907 | . . . . . 6 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
9 | fveq2 6901 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
10 | 9 | eleq1d 2811 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
11 | 3, 8, 10 | cbvralw 3294 | . . . . 5 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
12 | 11 | biimpi 215 | . . . 4 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
13 | 12 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
14 | climbddf.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
15 | 14 | climbdd 15676 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥) |
16 | 1, 2, 13, 15 | syl3anc 1368 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥) |
17 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑘abs | |
18 | 17, 6 | nffv 6911 | . . . . 5 ⊢ Ⅎ𝑘(abs‘(𝐹‘𝑗)) |
19 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
20 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑘𝑥 | |
21 | 18, 19, 20 | nfbr 5200 | . . . 4 ⊢ Ⅎ𝑘(abs‘(𝐹‘𝑗)) ≤ 𝑥 |
22 | nfv 1910 | . . . 4 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑘)) ≤ 𝑥 | |
23 | 2fveq3 6906 | . . . . 5 ⊢ (𝑗 = 𝑘 → (abs‘(𝐹‘𝑗)) = (abs‘(𝐹‘𝑘))) | |
24 | 23 | breq1d 5163 | . . . 4 ⊢ (𝑗 = 𝑘 → ((abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
25 | 21, 22, 24 | cbvralw 3294 | . . 3 ⊢ (∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
26 | 25 | rexbii 3084 | . 2 ⊢ (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
27 | 16, 26 | sylib 217 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2876 ∀wral 3051 ∃wrex 3060 class class class wbr 5153 dom cdm 5682 ‘cfv 6554 ℂcc 11156 ℝcr 11157 ≤ cle 11299 ℤcz 12610 ℤ≥cuz 12874 abscabs 15239 ⇝ cli 15486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fz 13539 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 |
This theorem is referenced by: climinf2mpt 45335 climinf3 45337 |
Copyright terms: Public domain | W3C validator |