Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climbddf Structured version   Visualization version   GIF version

Theorem climbddf 42372
 Description: A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climbddf.1 𝑘𝐹
climbddf.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climbddf ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑘,𝑀,𝑥   𝑘,𝑍,𝑥
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem climbddf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → 𝑀 ∈ ℤ)
2 simp2 1134 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → 𝐹 ∈ dom ⇝ )
3 nfv 1915 . . . . . 6 𝑗(𝐹𝑘) ∈ ℂ
4 climbddf.1 . . . . . . . 8 𝑘𝐹
5 nfcv 2955 . . . . . . . 8 𝑘𝑗
64, 5nffv 6656 . . . . . . 7 𝑘(𝐹𝑗)
7 nfcv 2955 . . . . . . 7 𝑘
86, 7nfel 2969 . . . . . 6 𝑘(𝐹𝑗) ∈ ℂ
9 fveq2 6646 . . . . . . 7 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
109eleq1d 2874 . . . . . 6 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
113, 8, 10cbvralw 3387 . . . . 5 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑗𝑍 (𝐹𝑗) ∈ ℂ)
1211biimpi 219 . . . 4 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → ∀𝑗𝑍 (𝐹𝑗) ∈ ℂ)
13123ad2ant3 1132 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∀𝑗𝑍 (𝐹𝑗) ∈ ℂ)
14 climbddf.2 . . . 4 𝑍 = (ℤ𝑀)
1514climbdd 15023 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑗𝑍 (𝐹𝑗) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐹𝑗)) ≤ 𝑥)
161, 2, 13, 15syl3anc 1368 . 2 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐹𝑗)) ≤ 𝑥)
17 nfcv 2955 . . . . . 6 𝑘abs
1817, 6nffv 6656 . . . . 5 𝑘(abs‘(𝐹𝑗))
19 nfcv 2955 . . . . 5 𝑘
20 nfcv 2955 . . . . 5 𝑘𝑥
2118, 19, 20nfbr 5078 . . . 4 𝑘(abs‘(𝐹𝑗)) ≤ 𝑥
22 nfv 1915 . . . 4 𝑗(abs‘(𝐹𝑘)) ≤ 𝑥
23 2fveq3 6651 . . . . 5 (𝑗 = 𝑘 → (abs‘(𝐹𝑗)) = (abs‘(𝐹𝑘)))
2423breq1d 5041 . . . 4 (𝑗 = 𝑘 → ((abs‘(𝐹𝑗)) ≤ 𝑥 ↔ (abs‘(𝐹𝑘)) ≤ 𝑥))
2521, 22, 24cbvralw 3387 . . 3 (∀𝑗𝑍 (abs‘(𝐹𝑗)) ≤ 𝑥 ↔ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
2625rexbii 3210 . 2 (∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐹𝑗)) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
2716, 26sylib 221 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Ⅎwnfc 2936  ∀wral 3106  ∃wrex 3107   class class class wbr 5031  dom cdm 5520  ‘cfv 6325  ℂcc 10527  ℝcr 10528   ≤ cle 10668  ℤcz 11972  ℤ≥cuz 12234  abscabs 14588   ⇝ cli 14836 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-fz 12889  df-seq 13368  df-exp 13429  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840 This theorem is referenced by:  climinf2mpt  42399  climinf3  42401
 Copyright terms: Public domain W3C validator