Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climbddf | Structured version Visualization version GIF version |
Description: A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climbddf.1 | ⊢ Ⅎ𝑘𝐹 |
climbddf.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
climbddf | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → 𝑀 ∈ ℤ) | |
2 | simp2 1136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → 𝐹 ∈ dom ⇝ ) | |
3 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑗(𝐹‘𝑘) ∈ ℂ | |
4 | climbddf.1 | . . . . . . . 8 ⊢ Ⅎ𝑘𝐹 | |
5 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
6 | 4, 5 | nffv 6784 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
7 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑘ℂ | |
8 | 6, 7 | nfel 2921 | . . . . . 6 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
9 | fveq2 6774 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
10 | 9 | eleq1d 2823 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
11 | 3, 8, 10 | cbvralw 3373 | . . . . 5 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
12 | 11 | biimpi 215 | . . . 4 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
13 | 12 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
14 | climbddf.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
15 | 14 | climbdd 15383 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥) |
16 | 1, 2, 13, 15 | syl3anc 1370 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥) |
17 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑘abs | |
18 | 17, 6 | nffv 6784 | . . . . 5 ⊢ Ⅎ𝑘(abs‘(𝐹‘𝑗)) |
19 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
20 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑘𝑥 | |
21 | 18, 19, 20 | nfbr 5121 | . . . 4 ⊢ Ⅎ𝑘(abs‘(𝐹‘𝑗)) ≤ 𝑥 |
22 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑘)) ≤ 𝑥 | |
23 | 2fveq3 6779 | . . . . 5 ⊢ (𝑗 = 𝑘 → (abs‘(𝐹‘𝑗)) = (abs‘(𝐹‘𝑘))) | |
24 | 23 | breq1d 5084 | . . . 4 ⊢ (𝑗 = 𝑘 → ((abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
25 | 21, 22, 24 | cbvralw 3373 | . . 3 ⊢ (∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
26 | 25 | rexbii 3181 | . 2 ⊢ (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
27 | 16, 26 | sylib 217 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 ℂcc 10869 ℝcr 10870 ≤ cle 11010 ℤcz 12319 ℤ≥cuz 12582 abscabs 14945 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 |
This theorem is referenced by: climinf2mpt 43255 climinf3 43257 |
Copyright terms: Public domain | W3C validator |