![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climbddf | Structured version Visualization version GIF version |
Description: A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climbddf.1 | ⊢ Ⅎ𝑘𝐹 |
climbddf.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
climbddf | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → 𝑀 ∈ ℤ) | |
2 | simp2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → 𝐹 ∈ dom ⇝ ) | |
3 | nfv 1909 | . . . . . 6 ⊢ Ⅎ𝑗(𝐹‘𝑘) ∈ ℂ | |
4 | climbddf.1 | . . . . . . . 8 ⊢ Ⅎ𝑘𝐹 | |
5 | nfcv 2897 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
6 | 4, 5 | nffv 6895 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
7 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑘ℂ | |
8 | 6, 7 | nfel 2911 | . . . . . 6 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
9 | fveq2 6885 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
10 | 9 | eleq1d 2812 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
11 | 3, 8, 10 | cbvralw 3297 | . . . . 5 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
12 | 11 | biimpi 215 | . . . 4 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
13 | 12 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
14 | climbddf.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
15 | 14 | climbdd 15624 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥) |
16 | 1, 2, 13, 15 | syl3anc 1368 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥) |
17 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑘abs | |
18 | 17, 6 | nffv 6895 | . . . . 5 ⊢ Ⅎ𝑘(abs‘(𝐹‘𝑗)) |
19 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
20 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑘𝑥 | |
21 | 18, 19, 20 | nfbr 5188 | . . . 4 ⊢ Ⅎ𝑘(abs‘(𝐹‘𝑗)) ≤ 𝑥 |
22 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑘)) ≤ 𝑥 | |
23 | 2fveq3 6890 | . . . . 5 ⊢ (𝑗 = 𝑘 → (abs‘(𝐹‘𝑗)) = (abs‘(𝐹‘𝑘))) | |
24 | 23 | breq1d 5151 | . . . 4 ⊢ (𝑗 = 𝑘 → ((abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
25 | 21, 22, 24 | cbvralw 3297 | . . 3 ⊢ (∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
26 | 25 | rexbii 3088 | . 2 ⊢ (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
27 | 16, 26 | sylib 217 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2877 ∀wral 3055 ∃wrex 3064 class class class wbr 5141 dom cdm 5669 ‘cfv 6537 ℂcc 11110 ℝcr 11111 ≤ cle 11253 ℤcz 12562 ℤ≥cuz 12826 abscabs 15187 ⇝ cli 15434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-fz 13491 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 |
This theorem is referenced by: climinf2mpt 44999 climinf3 45001 |
Copyright terms: Public domain | W3C validator |