![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climbddf | Structured version Visualization version GIF version |
Description: A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climbddf.1 | ⊢ Ⅎ𝑘𝐹 |
climbddf.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
climbddf | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1116 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → 𝑀 ∈ ℤ) | |
2 | simp2 1117 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → 𝐹 ∈ dom ⇝ ) | |
3 | nfv 1873 | . . . . . 6 ⊢ Ⅎ𝑗(𝐹‘𝑘) ∈ ℂ | |
4 | climbddf.1 | . . . . . . . 8 ⊢ Ⅎ𝑘𝐹 | |
5 | nfcv 2933 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
6 | 4, 5 | nffv 6509 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
7 | nfcv 2933 | . . . . . . 7 ⊢ Ⅎ𝑘ℂ | |
8 | 6, 7 | nfel 2945 | . . . . . 6 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
9 | fveq2 6499 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
10 | 9 | eleq1d 2851 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
11 | 3, 8, 10 | cbvral 3380 | . . . . 5 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
12 | 11 | biimpi 208 | . . . 4 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
13 | 12 | 3ad2ant3 1115 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) |
14 | climbddf.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
15 | 14 | climbdd 14889 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥) |
16 | 1, 2, 13, 15 | syl3anc 1351 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥) |
17 | nfcv 2933 | . . . . . 6 ⊢ Ⅎ𝑘abs | |
18 | 17, 6 | nffv 6509 | . . . . 5 ⊢ Ⅎ𝑘(abs‘(𝐹‘𝑗)) |
19 | nfcv 2933 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
20 | nfcv 2933 | . . . . 5 ⊢ Ⅎ𝑘𝑥 | |
21 | 18, 19, 20 | nfbr 4976 | . . . 4 ⊢ Ⅎ𝑘(abs‘(𝐹‘𝑗)) ≤ 𝑥 |
22 | nfv 1873 | . . . 4 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑘)) ≤ 𝑥 | |
23 | 2fveq3 6504 | . . . . 5 ⊢ (𝑗 = 𝑘 → (abs‘(𝐹‘𝑗)) = (abs‘(𝐹‘𝑘))) | |
24 | 23 | breq1d 4939 | . . . 4 ⊢ (𝑗 = 𝑘 → ((abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ (abs‘(𝐹‘𝑘)) ≤ 𝑥)) |
25 | 21, 22, 24 | cbvral 3380 | . . 3 ⊢ (∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
26 | 25 | rexbii 3195 | . 2 ⊢ (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐹‘𝑗)) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
27 | 16, 26 | sylib 210 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 Ⅎwnfc 2917 ∀wral 3089 ∃wrex 3090 class class class wbr 4929 dom cdm 5407 ‘cfv 6188 ℂcc 10333 ℝcr 10334 ≤ cle 10475 ℤcz 11793 ℤ≥cuz 12058 abscabs 14454 ⇝ cli 14702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-n0 11708 df-z 11794 df-uz 12059 df-rp 12205 df-fz 12709 df-seq 13185 df-exp 13245 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-clim 14706 |
This theorem is referenced by: climinf2mpt 41424 climinf3 41426 |
Copyright terms: Public domain | W3C validator |