| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnntri | Structured version Visualization version GIF version | ||
| Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnntri | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 23127 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → 𝐽 ∈ Top) |
| 3 | cnvimass 6053 | . . 3 ⊢ (◡𝐹 “ 𝑆) ⊆ dom 𝐹 | |
| 4 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 5 | cncls2i.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 6 | 4, 5 | cnf 23133 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝑌) |
| 7 | 6 | fdmd 6698 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → dom 𝐹 = ∪ 𝐽) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → dom 𝐹 = ∪ 𝐽) |
| 9 | 3, 8 | sseqtrid 3989 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) |
| 10 | cntop2 23128 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 11 | 5 | ntropn 22936 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
| 12 | 10, 11 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
| 13 | cnima 23152 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((int‘𝐾)‘𝑆) ∈ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) | |
| 14 | 12, 13 | syldan 591 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) |
| 15 | 5 | ntrss2 22944 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
| 16 | 10, 15 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
| 17 | imass2 6073 | . . 3 ⊢ (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) |
| 19 | 4 | ssntr 22945 | . 2 ⊢ (((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) ∧ ((◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽 ∧ (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆))) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
| 20 | 2, 9, 14, 18, 19 | syl22anc 838 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 ◡ccnv 5637 dom cdm 5638 “ cima 5641 ‘cfv 6511 (class class class)co 7387 Topctop 22780 intcnt 22904 Cn ccn 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-top 22781 df-topon 22798 df-ntr 22907 df-cn 23114 |
| This theorem is referenced by: cnntr 23162 hmeontr 23656 cnneiima 48905 |
| Copyright terms: Public domain | W3C validator |