Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnntri | Structured version Visualization version GIF version |
Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnntri | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 22402 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → 𝐽 ∈ Top) |
3 | cnvimass 5988 | . . 3 ⊢ (◡𝐹 “ 𝑆) ⊆ dom 𝐹 | |
4 | eqid 2740 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | cncls2i.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
6 | 4, 5 | cnf 22408 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝑌) |
7 | 6 | fdmd 6609 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → dom 𝐹 = ∪ 𝐽) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → dom 𝐹 = ∪ 𝐽) |
9 | 3, 8 | sseqtrid 3978 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) |
10 | cntop2 22403 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
11 | 5 | ntropn 22211 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
12 | 10, 11 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
13 | cnima 22427 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((int‘𝐾)‘𝑆) ∈ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) | |
14 | 12, 13 | syldan 591 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) |
15 | 5 | ntrss2 22219 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
16 | 10, 15 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
17 | imass2 6009 | . . 3 ⊢ (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) |
19 | 4 | ssntr 22220 | . 2 ⊢ (((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) ∧ ((◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽 ∧ (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆))) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
20 | 2, 9, 14, 18, 19 | syl22anc 836 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ∪ cuni 4845 ◡ccnv 5589 dom cdm 5590 “ cima 5593 ‘cfv 6432 (class class class)co 7272 Topctop 22053 intcnt 22179 Cn ccn 22386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-map 8609 df-top 22054 df-topon 22071 df-ntr 22182 df-cn 22389 |
This theorem is referenced by: cnntr 22437 hmeontr 22931 cnneiima 46189 |
Copyright terms: Public domain | W3C validator |