![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnntri | Structured version Visualization version GIF version |
Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnntri | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 21422 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
2 | 1 | adantr 474 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → 𝐽 ∈ Top) |
3 | cnvimass 5730 | . . 3 ⊢ (◡𝐹 “ 𝑆) ⊆ dom 𝐹 | |
4 | eqid 2825 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | cncls2i.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
6 | 4, 5 | cnf 21428 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝑌) |
7 | 6 | fdmd 6291 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → dom 𝐹 = ∪ 𝐽) |
8 | 7 | adantr 474 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → dom 𝐹 = ∪ 𝐽) |
9 | 3, 8 | syl5sseq 3878 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) |
10 | cntop2 21423 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
11 | 5 | ntropn 21231 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
12 | 10, 11 | sylan 575 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ∈ 𝐾) |
13 | cnima 21447 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((int‘𝐾)‘𝑆) ∈ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) | |
14 | 12, 13 | syldan 585 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽) |
15 | 5 | ntrss2 21239 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
16 | 10, 15 | sylan 575 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) ⊆ 𝑆) |
17 | imass2 5746 | . . 3 ⊢ (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆)) |
19 | 4 | ssntr 21240 | . 2 ⊢ (((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑆) ⊆ ∪ 𝐽) ∧ ((◡𝐹 “ ((int‘𝐾)‘𝑆)) ∈ 𝐽 ∧ (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ (◡𝐹 “ 𝑆))) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
20 | 2, 9, 14, 18, 19 | syl22anc 872 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 ∪ cuni 4660 ◡ccnv 5345 dom cdm 5346 “ cima 5349 ‘cfv 6127 (class class class)co 6910 Topctop 21075 intcnt 21199 Cn ccn 21406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-map 8129 df-top 21076 df-topon 21093 df-ntr 21202 df-cn 21409 |
This theorem is referenced by: cnntr 21457 hmeontr 21950 |
Copyright terms: Public domain | W3C validator |