Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restclssep Structured version   Visualization version   GIF version

Theorem restclssep 47736
Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
restclsseplem.6 (𝜑 → (𝑆𝑇) = ∅)
restclssep.7 (𝜑𝑇 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restclssep (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))

Proof of Theorem restclssep
StepHypRef Expression
1 incom 4193 . . 3 (((cls‘𝐽)‘𝑇) ∩ 𝑆) = (𝑆 ∩ ((cls‘𝐽)‘𝑇))
2 restcls2.1 . . . 4 (𝜑𝐽 ∈ Top)
3 restcls2.2 . . . 4 (𝜑𝑋 = 𝐽)
4 restcls2.3 . . . 4 (𝜑𝑌𝑋)
5 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
6 restclssep.7 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐾))
7 incom 4193 . . . . 5 (𝑆𝑇) = (𝑇𝑆)
8 restclsseplem.6 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
97, 8eqtr3id 2778 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
10 restcls2.5 . . . . 5 (𝜑𝑆 ∈ (Clsd‘𝐾))
112, 3, 4, 5, 10restcls2lem 47733 . . . 4 (𝜑𝑆𝑌)
122, 3, 4, 5, 6, 9, 11restclsseplem 47735 . . 3 (𝜑 → (((cls‘𝐽)‘𝑇) ∩ 𝑆) = ∅)
131, 12eqtr3id 2778 . 2 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅)
142, 3, 4, 5, 6restcls2lem 47733 . . 3 (𝜑𝑇𝑌)
152, 3, 4, 5, 10, 8, 14restclsseplem 47735 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
1613, 15jca 511 1 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cin 3939  wss 3940  c0 4314   cuni 4899  cfv 6533  (class class class)co 7401  t crest 17365  Topctop 22717  Clsdccld 22842  clsccl 22844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-en 8936  df-fin 8939  df-fi 9402  df-rest 17367  df-topgen 17388  df-top 22718  df-topon 22735  df-bases 22771  df-cld 22845  df-cls 22847
This theorem is referenced by:  iscnrm3l  47772
  Copyright terms: Public domain W3C validator