![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > restclssep | Structured version Visualization version GIF version |
Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.) |
Ref | Expression |
---|---|
restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
restclsseplem.6 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
restclssep.7 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) |
Ref | Expression |
---|---|
restclssep | ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4230 | . . 3 ⊢ (((cls‘𝐽)‘𝑇) ∩ 𝑆) = (𝑆 ∩ ((cls‘𝐽)‘𝑇)) | |
2 | restcls2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | restcls2.2 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
4 | restcls2.3 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
5 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
6 | restclssep.7 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) | |
7 | incom 4230 | . . . . 5 ⊢ (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆) | |
8 | restclsseplem.6 | . . . . 5 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
9 | 7, 8 | eqtr3id 2794 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑆) = ∅) |
10 | restcls2.5 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
11 | 2, 3, 4, 5, 10 | restcls2lem 48582 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
12 | 2, 3, 4, 5, 6, 9, 11 | restclsseplem 48584 | . . 3 ⊢ (𝜑 → (((cls‘𝐽)‘𝑇) ∩ 𝑆) = ∅) |
13 | 1, 12 | eqtr3id 2794 | . 2 ⊢ (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅) |
14 | 2, 3, 4, 5, 6 | restcls2lem 48582 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑌) |
15 | 2, 3, 4, 5, 10, 8, 14 | restclsseplem 48584 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
16 | 13, 15 | jca 511 | 1 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ‘cfv 6568 (class class class)co 7443 ↾t crest 17474 Topctop 22912 Clsdccld 23037 clsccl 23039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-en 8998 df-fin 9001 df-fi 9474 df-rest 17476 df-topgen 17497 df-top 22913 df-topon 22930 df-bases 22966 df-cld 23040 df-cls 23042 |
This theorem is referenced by: iscnrm3l 48621 |
Copyright terms: Public domain | W3C validator |