![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > restclssep | Structured version Visualization version GIF version |
Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.) |
Ref | Expression |
---|---|
restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
restclsseplem.6 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
restclssep.7 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) |
Ref | Expression |
---|---|
restclssep | ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4193 | . . 3 ⊢ (((cls‘𝐽)‘𝑇) ∩ 𝑆) = (𝑆 ∩ ((cls‘𝐽)‘𝑇)) | |
2 | restcls2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | restcls2.2 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
4 | restcls2.3 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
5 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
6 | restclssep.7 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) | |
7 | incom 4193 | . . . . 5 ⊢ (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆) | |
8 | restclsseplem.6 | . . . . 5 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
9 | 7, 8 | eqtr3id 2778 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑆) = ∅) |
10 | restcls2.5 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
11 | 2, 3, 4, 5, 10 | restcls2lem 47733 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
12 | 2, 3, 4, 5, 6, 9, 11 | restclsseplem 47735 | . . 3 ⊢ (𝜑 → (((cls‘𝐽)‘𝑇) ∩ 𝑆) = ∅) |
13 | 1, 12 | eqtr3id 2778 | . 2 ⊢ (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅) |
14 | 2, 3, 4, 5, 6 | restcls2lem 47733 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑌) |
15 | 2, 3, 4, 5, 10, 8, 14 | restclsseplem 47735 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
16 | 13, 15 | jca 511 | 1 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 ∪ cuni 4899 ‘cfv 6533 (class class class)co 7401 ↾t crest 17365 Topctop 22717 Clsdccld 22842 clsccl 22844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-en 8936 df-fin 8939 df-fi 9402 df-rest 17367 df-topgen 17388 df-top 22718 df-topon 22735 df-bases 22771 df-cld 22845 df-cls 22847 |
This theorem is referenced by: iscnrm3l 47772 |
Copyright terms: Public domain | W3C validator |