| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restclssep | Structured version Visualization version GIF version | ||
| Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
| restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
| restclsseplem.6 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| restclssep.7 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) |
| Ref | Expression |
|---|---|
| restclssep | ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4156 | . . 3 ⊢ (((cls‘𝐽)‘𝑇) ∩ 𝑆) = (𝑆 ∩ ((cls‘𝐽)‘𝑇)) | |
| 2 | restcls2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | restcls2.2 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
| 4 | restcls2.3 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 5 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
| 6 | restclssep.7 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) | |
| 7 | incom 4156 | . . . . 5 ⊢ (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆) | |
| 8 | restclsseplem.6 | . . . . 5 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
| 9 | 7, 8 | eqtr3id 2780 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑆) = ∅) |
| 10 | restcls2.5 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
| 11 | 2, 3, 4, 5, 10 | restcls2lem 48952 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
| 12 | 2, 3, 4, 5, 6, 9, 11 | restclsseplem 48954 | . . 3 ⊢ (𝜑 → (((cls‘𝐽)‘𝑇) ∩ 𝑆) = ∅) |
| 13 | 1, 12 | eqtr3id 2780 | . 2 ⊢ (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅) |
| 14 | 2, 3, 4, 5, 6 | restcls2lem 48952 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑌) |
| 15 | 2, 3, 4, 5, 10, 8, 14 | restclsseplem 48954 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
| 16 | 13, 15 | jca 511 | 1 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ∪ cuni 4856 ‘cfv 6481 (class class class)co 7346 ↾t crest 17324 Topctop 22808 Clsdccld 22931 clsccl 22933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-en 8870 df-fin 8873 df-fi 9295 df-rest 17326 df-topgen 17347 df-top 22809 df-topon 22826 df-bases 22861 df-cld 22934 df-cls 22936 |
| This theorem is referenced by: iscnrm3l 48990 |
| Copyright terms: Public domain | W3C validator |