Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restclssep Structured version   Visualization version   GIF version

Theorem restclssep 48877
Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
restclsseplem.6 (𝜑 → (𝑆𝑇) = ∅)
restclssep.7 (𝜑𝑇 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restclssep (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))

Proof of Theorem restclssep
StepHypRef Expression
1 incom 4168 . . 3 (((cls‘𝐽)‘𝑇) ∩ 𝑆) = (𝑆 ∩ ((cls‘𝐽)‘𝑇))
2 restcls2.1 . . . 4 (𝜑𝐽 ∈ Top)
3 restcls2.2 . . . 4 (𝜑𝑋 = 𝐽)
4 restcls2.3 . . . 4 (𝜑𝑌𝑋)
5 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
6 restclssep.7 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐾))
7 incom 4168 . . . . 5 (𝑆𝑇) = (𝑇𝑆)
8 restclsseplem.6 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
97, 8eqtr3id 2778 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
10 restcls2.5 . . . . 5 (𝜑𝑆 ∈ (Clsd‘𝐾))
112, 3, 4, 5, 10restcls2lem 48874 . . . 4 (𝜑𝑆𝑌)
122, 3, 4, 5, 6, 9, 11restclsseplem 48876 . . 3 (𝜑 → (((cls‘𝐽)‘𝑇) ∩ 𝑆) = ∅)
131, 12eqtr3id 2778 . 2 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅)
142, 3, 4, 5, 6restcls2lem 48874 . . 3 (𝜑𝑇𝑌)
152, 3, 4, 5, 10, 8, 14restclsseplem 48876 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
1613, 15jca 511 1 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3910  wss 3911  c0 4292   cuni 4867  cfv 6499  (class class class)co 7369  t crest 17359  Topctop 22756  Clsdccld 22879  clsccl 22881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-en 8896  df-fin 8899  df-fi 9338  df-rest 17361  df-topgen 17382  df-top 22757  df-topon 22774  df-bases 22809  df-cld 22882  df-cls 22884
This theorem is referenced by:  iscnrm3l  48912
  Copyright terms: Public domain W3C validator