Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restclssep Structured version   Visualization version   GIF version

Theorem restclssep 48955
Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
restclsseplem.6 (𝜑 → (𝑆𝑇) = ∅)
restclssep.7 (𝜑𝑇 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restclssep (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))

Proof of Theorem restclssep
StepHypRef Expression
1 incom 4156 . . 3 (((cls‘𝐽)‘𝑇) ∩ 𝑆) = (𝑆 ∩ ((cls‘𝐽)‘𝑇))
2 restcls2.1 . . . 4 (𝜑𝐽 ∈ Top)
3 restcls2.2 . . . 4 (𝜑𝑋 = 𝐽)
4 restcls2.3 . . . 4 (𝜑𝑌𝑋)
5 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
6 restclssep.7 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐾))
7 incom 4156 . . . . 5 (𝑆𝑇) = (𝑇𝑆)
8 restclsseplem.6 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
97, 8eqtr3id 2780 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
10 restcls2.5 . . . . 5 (𝜑𝑆 ∈ (Clsd‘𝐾))
112, 3, 4, 5, 10restcls2lem 48952 . . . 4 (𝜑𝑆𝑌)
122, 3, 4, 5, 6, 9, 11restclsseplem 48954 . . 3 (𝜑 → (((cls‘𝐽)‘𝑇) ∩ 𝑆) = ∅)
131, 12eqtr3id 2780 . 2 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅)
142, 3, 4, 5, 6restcls2lem 48952 . . 3 (𝜑𝑇𝑌)
152, 3, 4, 5, 10, 8, 14restclsseplem 48954 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
1613, 15jca 511 1 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cin 3896  wss 3897  c0 4280   cuni 4856  cfv 6481  (class class class)co 7346  t crest 17324  Topctop 22808  Clsdccld 22931  clsccl 22933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-en 8870  df-fin 8873  df-fi 9295  df-rest 17326  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-cls 22936
This theorem is referenced by:  iscnrm3l  48990
  Copyright terms: Public domain W3C validator