| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restclssep | Structured version Visualization version GIF version | ||
| Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
| restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
| restclsseplem.6 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| restclssep.7 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) |
| Ref | Expression |
|---|---|
| restclssep | ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4174 | . . 3 ⊢ (((cls‘𝐽)‘𝑇) ∩ 𝑆) = (𝑆 ∩ ((cls‘𝐽)‘𝑇)) | |
| 2 | restcls2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | restcls2.2 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
| 4 | restcls2.3 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 5 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
| 6 | restclssep.7 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) | |
| 7 | incom 4174 | . . . . 5 ⊢ (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆) | |
| 8 | restclsseplem.6 | . . . . 5 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
| 9 | 7, 8 | eqtr3id 2779 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑆) = ∅) |
| 10 | restcls2.5 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
| 11 | 2, 3, 4, 5, 10 | restcls2lem 48889 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
| 12 | 2, 3, 4, 5, 6, 9, 11 | restclsseplem 48891 | . . 3 ⊢ (𝜑 → (((cls‘𝐽)‘𝑇) ∩ 𝑆) = ∅) |
| 13 | 1, 12 | eqtr3id 2779 | . 2 ⊢ (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅) |
| 14 | 2, 3, 4, 5, 6 | restcls2lem 48889 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑌) |
| 15 | 2, 3, 4, 5, 10, 8, 14 | restclsseplem 48891 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
| 16 | 13, 15 | jca 511 | 1 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 ∪ cuni 4873 ‘cfv 6513 (class class class)co 7389 ↾t crest 17389 Topctop 22786 Clsdccld 22909 clsccl 22911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-en 8921 df-fin 8924 df-fi 9368 df-rest 17391 df-topgen 17412 df-top 22787 df-topon 22804 df-bases 22839 df-cld 22912 df-cls 22914 |
| This theorem is referenced by: iscnrm3l 48927 |
| Copyright terms: Public domain | W3C validator |