Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restclssep Structured version   Visualization version   GIF version

Theorem restclssep 46209
Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
restclsseplem.6 (𝜑 → (𝑆𝑇) = ∅)
restclssep.7 (𝜑𝑇 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restclssep (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))

Proof of Theorem restclssep
StepHypRef Expression
1 incom 4135 . . 3 (((cls‘𝐽)‘𝑇) ∩ 𝑆) = (𝑆 ∩ ((cls‘𝐽)‘𝑇))
2 restcls2.1 . . . 4 (𝜑𝐽 ∈ Top)
3 restcls2.2 . . . 4 (𝜑𝑋 = 𝐽)
4 restcls2.3 . . . 4 (𝜑𝑌𝑋)
5 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
6 restclssep.7 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐾))
7 incom 4135 . . . . 5 (𝑆𝑇) = (𝑇𝑆)
8 restclsseplem.6 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
97, 8eqtr3id 2792 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
10 restcls2.5 . . . . 5 (𝜑𝑆 ∈ (Clsd‘𝐾))
112, 3, 4, 5, 10restcls2lem 46206 . . . 4 (𝜑𝑆𝑌)
122, 3, 4, 5, 6, 9, 11restclsseplem 46208 . . 3 (𝜑 → (((cls‘𝐽)‘𝑇) ∩ 𝑆) = ∅)
131, 12eqtr3id 2792 . 2 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅)
142, 3, 4, 5, 6restcls2lem 46206 . . 3 (𝜑𝑇𝑌)
152, 3, 4, 5, 10, 8, 14restclsseplem 46208 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
1613, 15jca 512 1 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cin 3886  wss 3887  c0 4256   cuni 4839  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  Clsdccld 22167  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-cls 22172
This theorem is referenced by:  iscnrm3l  46245
  Copyright terms: Public domain W3C validator