| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iooii | Structured version Visualization version GIF version | ||
| Description: Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| iooii | ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11228 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | 1xr 11240 | . . 3 ⊢ 1 ∈ ℝ* | |
| 3 | ioossioo 13409 | . . 3 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≤ 1)) → (𝐴(,)𝐵) ⊆ (0(,)1)) | |
| 4 | 1, 2, 3 | mpanl12 702 | . 2 ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ⊆ (0(,)1)) |
| 5 | iooretop 24660 | . . . 4 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
| 6 | iooretop 24660 | . . . . 5 ⊢ (0(,)1) ∈ (topGen‘ran (,)) | |
| 7 | ioossicc 13401 | . . . . 5 ⊢ (0(,)1) ⊆ (0[,]1) | |
| 8 | retop 24656 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 9 | ovex 7423 | . . . . . 6 ⊢ (0[,]1) ∈ V | |
| 10 | restopnb 23069 | . . . . . 6 ⊢ ((((topGen‘ran (,)) ∈ Top ∧ (0[,]1) ∈ V) ∧ ((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1))) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))) | |
| 11 | 8, 9, 10 | mpanl12 702 | . . . . 5 ⊢ (((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1)) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))) |
| 12 | 6, 7, 11 | mp3an12 1453 | . . . 4 ⊢ ((𝐴(,)𝐵) ⊆ (0(,)1) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))) |
| 13 | 5, 12 | mpbii 233 | . . 3 ⊢ ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1))) |
| 14 | dfii2 24782 | . . 3 ⊢ II = ((topGen‘ran (,)) ↾t (0[,]1)) | |
| 15 | 13, 14 | eleqtrrdi 2840 | . 2 ⊢ ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ II) |
| 16 | 4, 15 | syl 17 | 1 ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ran crn 5642 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 ℝ*cxr 11214 ≤ cle 11216 (,)cioo 13313 [,]cicc 13316 ↾t crest 17390 topGenctg 17407 Topctop 22787 IIcii 24775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-icc 13320 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-rest 17392 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-ii 24777 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |