Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooii Structured version   Visualization version   GIF version

Theorem iooii 45650
Description: Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
iooii ((0 ≤ 𝐴𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II)

Proof of Theorem iooii
StepHypRef Expression
1 0xr 10739 . . 3 0 ∈ ℝ*
2 1xr 10751 . . 3 1 ∈ ℝ*
3 ioossioo 12886 . . 3 (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≤ 1)) → (𝐴(,)𝐵) ⊆ (0(,)1))
41, 2, 3mpanl12 701 . 2 ((0 ≤ 𝐴𝐵 ≤ 1) → (𝐴(,)𝐵) ⊆ (0(,)1))
5 iooretop 23480 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
6 iooretop 23480 . . . . 5 (0(,)1) ∈ (topGen‘ran (,))
7 ioossicc 12878 . . . . 5 (0(,)1) ⊆ (0[,]1)
8 retop 23476 . . . . . 6 (topGen‘ran (,)) ∈ Top
9 ovex 7189 . . . . . 6 (0[,]1) ∈ V
10 restopnb 21888 . . . . . 6 ((((topGen‘ran (,)) ∈ Top ∧ (0[,]1) ∈ V) ∧ ((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1))) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1))))
118, 9, 10mpanl12 701 . . . . 5 (((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1)) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1))))
126, 7, 11mp3an12 1448 . . . 4 ((𝐴(,)𝐵) ⊆ (0(,)1) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1))))
135, 12mpbii 236 . . 3 ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))
14 dfii2 23596 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
1513, 14eleqtrrdi 2863 . 2 ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ II)
164, 15syl 17 1 ((0 ≤ 𝐴𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  Vcvv 3409  wss 3860   class class class wbr 5036  ran crn 5529  cfv 6340  (class class class)co 7156  0cc0 10588  1c1 10589  *cxr 10725  cle 10727  (,)cioo 12792  [,]cicc 12795  t crest 16765  topGenctg 16782  Topctop 21606  IIcii 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ioo 12796  df-icc 12799  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-rest 16767  df-topgen 16788  df-psmet 20171  df-xmet 20172  df-met 20173  df-bl 20174  df-mopn 20175  df-top 21607  df-topon 21624  df-bases 21659  df-ii 23591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator