Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooii Structured version   Visualization version   GIF version

Theorem iooii 48910
Description: Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
iooii ((0 ≤ 𝐴𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II)

Proof of Theorem iooii
StepHypRef Expression
1 0xr 11228 . . 3 0 ∈ ℝ*
2 1xr 11240 . . 3 1 ∈ ℝ*
3 ioossioo 13409 . . 3 (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≤ 1)) → (𝐴(,)𝐵) ⊆ (0(,)1))
41, 2, 3mpanl12 702 . 2 ((0 ≤ 𝐴𝐵 ≤ 1) → (𝐴(,)𝐵) ⊆ (0(,)1))
5 iooretop 24660 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
6 iooretop 24660 . . . . 5 (0(,)1) ∈ (topGen‘ran (,))
7 ioossicc 13401 . . . . 5 (0(,)1) ⊆ (0[,]1)
8 retop 24656 . . . . . 6 (topGen‘ran (,)) ∈ Top
9 ovex 7423 . . . . . 6 (0[,]1) ∈ V
10 restopnb 23069 . . . . . 6 ((((topGen‘ran (,)) ∈ Top ∧ (0[,]1) ∈ V) ∧ ((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1))) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1))))
118, 9, 10mpanl12 702 . . . . 5 (((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1)) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1))))
126, 7, 11mp3an12 1453 . . . 4 ((𝐴(,)𝐵) ⊆ (0(,)1) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1))))
135, 12mpbii 233 . . 3 ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))
14 dfii2 24782 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
1513, 14eleqtrrdi 2840 . 2 ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ II)
164, 15syl 17 1 ((0 ≤ 𝐴𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  *cxr 11214  cle 11216  (,)cioo 13313  [,]cicc 13316  t crest 17390  topGenctg 17407  Topctop 22787  IIcii 24775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-icc 13320  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-ii 24777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator