![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooii | Structured version Visualization version GIF version |
Description: Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.) |
Ref | Expression |
---|---|
iooii | ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11265 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1xr 11277 | . . 3 ⊢ 1 ∈ ℝ* | |
3 | ioossioo 13422 | . . 3 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≤ 1)) → (𝐴(,)𝐵) ⊆ (0(,)1)) | |
4 | 1, 2, 3 | mpanl12 700 | . 2 ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ⊆ (0(,)1)) |
5 | iooretop 24502 | . . . 4 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
6 | iooretop 24502 | . . . . 5 ⊢ (0(,)1) ∈ (topGen‘ran (,)) | |
7 | ioossicc 13414 | . . . . 5 ⊢ (0(,)1) ⊆ (0[,]1) | |
8 | retop 24498 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
9 | ovex 7444 | . . . . . 6 ⊢ (0[,]1) ∈ V | |
10 | restopnb 22899 | . . . . . 6 ⊢ ((((topGen‘ran (,)) ∈ Top ∧ (0[,]1) ∈ V) ∧ ((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1))) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))) | |
11 | 8, 9, 10 | mpanl12 700 | . . . . 5 ⊢ (((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1)) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))) |
12 | 6, 7, 11 | mp3an12 1451 | . . . 4 ⊢ ((𝐴(,)𝐵) ⊆ (0(,)1) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))) |
13 | 5, 12 | mpbii 232 | . . 3 ⊢ ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1))) |
14 | dfii2 24622 | . . 3 ⊢ II = ((topGen‘ran (,)) ↾t (0[,]1)) | |
15 | 13, 14 | eleqtrrdi 2844 | . 2 ⊢ ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ II) |
16 | 4, 15 | syl 17 | 1 ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 class class class wbr 5148 ran crn 5677 ‘cfv 6543 (class class class)co 7411 0cc0 11112 1c1 11113 ℝ*cxr 11251 ≤ cle 11253 (,)cioo 13328 [,]cicc 13331 ↾t crest 17370 topGenctg 17387 Topctop 22615 IIcii 24615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-icc 13335 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-rest 17372 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-top 22616 df-topon 22633 df-bases 22669 df-ii 24617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |