![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooii | Structured version Visualization version GIF version |
Description: Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.) |
Ref | Expression |
---|---|
iooii | ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11311 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1xr 11323 | . . 3 ⊢ 1 ∈ ℝ* | |
3 | ioossioo 13472 | . . 3 ⊢ (((0 ∈ ℝ* ∧ 1 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≤ 1)) → (𝐴(,)𝐵) ⊆ (0(,)1)) | |
4 | 1, 2, 3 | mpanl12 700 | . 2 ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ⊆ (0(,)1)) |
5 | iooretop 24773 | . . . 4 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
6 | iooretop 24773 | . . . . 5 ⊢ (0(,)1) ∈ (topGen‘ran (,)) | |
7 | ioossicc 13464 | . . . . 5 ⊢ (0(,)1) ⊆ (0[,]1) | |
8 | retop 24769 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
9 | ovex 7457 | . . . . . 6 ⊢ (0[,]1) ∈ V | |
10 | restopnb 23170 | . . . . . 6 ⊢ ((((topGen‘ran (,)) ∈ Top ∧ (0[,]1) ∈ V) ∧ ((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1))) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))) | |
11 | 8, 9, 10 | mpanl12 700 | . . . . 5 ⊢ (((0(,)1) ∈ (topGen‘ran (,)) ∧ (0(,)1) ⊆ (0[,]1) ∧ (𝐴(,)𝐵) ⊆ (0(,)1)) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))) |
12 | 6, 7, 11 | mp3an12 1448 | . . . 4 ⊢ ((𝐴(,)𝐵) ⊆ (0(,)1) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))) |
13 | 5, 12 | mpbii 232 | . . 3 ⊢ ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ ((topGen‘ran (,)) ↾t (0[,]1))) |
14 | dfii2 24893 | . . 3 ⊢ II = ((topGen‘ran (,)) ↾t (0[,]1)) | |
15 | 13, 14 | eleqtrrdi 2837 | . 2 ⊢ ((𝐴(,)𝐵) ⊆ (0(,)1) → (𝐴(,)𝐵) ∈ II) |
16 | 4, 15 | syl 17 | 1 ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 class class class wbr 5153 ran crn 5683 ‘cfv 6554 (class class class)co 7424 0cc0 11158 1c1 11159 ℝ*cxr 11297 ≤ cle 11299 (,)cioo 13378 [,]cicc 13381 ↾t crest 17435 topGenctg 17452 Topctop 22886 IIcii 24886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-icc 13385 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-rest 17437 df-topgen 17458 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-top 22887 df-topon 22904 df-bases 22940 df-ii 24888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |