Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat2 Structured version   Visualization version   GIF version

Theorem cvrat2 37892
Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. (atcvat2i 31329 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat2.b 𝐵 = (Base‘𝐾)
cvrat2.j = (join‘𝐾)
cvrat2.c 𝐶 = ( ⋖ ‘𝐾)
cvrat2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄𝑋𝐶(𝑃 𝑄))) → 𝑋𝐴)

Proof of Theorem cvrat2
StepHypRef Expression
1 cvrat2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2 cvrat2.j . . . . . . . . 9 = (join‘𝐾)
3 eqid 2736 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
4 cvrat2.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
5 cvrat2.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5atcvrj0 37891 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = (0.‘𝐾) ↔ 𝑃 = 𝑄))
763expa 1118 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = (0.‘𝐾) ↔ 𝑃 = 𝑄))
87necon3bid 2988 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 ≠ (0.‘𝐾) ↔ 𝑃𝑄))
9 simpl 483 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
10 simpr1 1194 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
11 hllat 37825 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1211adantr 481 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
13 simpr2 1195 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
141, 5atbase 37751 . . . . . . . . . . 11 (𝑃𝐴𝑃𝐵)
1513, 14syl 17 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
16 simpr3 1196 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
171, 5atbase 37751 . . . . . . . . . . 11 (𝑄𝐴𝑄𝐵)
1816, 17syl 17 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
191, 2latjcl 18328 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
2012, 15, 18, 19syl3anc 1371 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
21 eqid 2736 . . . . . . . . . . 11 (lt‘𝐾) = (lt‘𝐾)
221, 21, 4cvrlt 37732 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋𝐶(𝑃 𝑄)) → 𝑋(lt‘𝐾)(𝑃 𝑄))
2322ex 413 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋𝐶(𝑃 𝑄) → 𝑋(lt‘𝐾)(𝑃 𝑄)))
249, 10, 20, 23syl3anc 1371 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → 𝑋(lt‘𝐾)(𝑃 𝑄)))
251, 21, 2, 3, 5cvrat 37885 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑋(lt‘𝐾)(𝑃 𝑄)) → 𝑋𝐴))
2625expcomd 417 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(lt‘𝐾)(𝑃 𝑄) → (𝑋 ≠ (0.‘𝐾) → 𝑋𝐴)))
2724, 26syld 47 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑋 ≠ (0.‘𝐾) → 𝑋𝐴)))
2827imp 407 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 ≠ (0.‘𝐾) → 𝑋𝐴))
298, 28sylbird 259 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑃𝑄𝑋𝐴))
3029ex 413 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑃𝑄𝑋𝐴)))
3130com23 86 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (𝑋𝐶(𝑃 𝑄) → 𝑋𝐴)))
3231impd 411 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄𝑋𝐶(𝑃 𝑄)) → 𝑋𝐴))
33323impia 1117 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄𝑋𝐶(𝑃 𝑄))) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  ltcplt 18197  joincjn 18200  0.cp0 18312  Latclat 18320  ccvr 37724  Atomscatm 37725  HLchlt 37812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813
This theorem is referenced by:  cvrat3  37905  atcvrlln  37983  lncvrelatN  38244
  Copyright terms: Public domain W3C validator