Proof of Theorem cvrat2
| Step | Hyp | Ref
| Expression |
| 1 | | cvrat2.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | cvrat2.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
| 3 | | eqid 2737 |
. . . . . . . . 9
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 4 | | cvrat2.c |
. . . . . . . . 9
⊢ 𝐶 = ( ⋖ ‘𝐾) |
| 5 | | cvrat2.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | 1, 2, 3, 4, 5 | atcvrj0 39430 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 = (0.‘𝐾) ↔ 𝑃 = 𝑄)) |
| 7 | 6 | 3expa 1119 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 = (0.‘𝐾) ↔ 𝑃 = 𝑄)) |
| 8 | 7 | necon3bid 2985 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 ≠ (0.‘𝐾) ↔ 𝑃 ≠ 𝑄)) |
| 9 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) |
| 10 | | simpr1 1195 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
| 11 | | hllat 39364 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 12 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 13 | | simpr2 1196 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
| 14 | 1, 5 | atbase 39290 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) |
| 16 | | simpr3 1197 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
| 17 | 1, 5 | atbase 39290 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
| 19 | 1, 2 | latjcl 18484 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 20 | 12, 15, 18, 19 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 21 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(lt‘𝐾) =
(lt‘𝐾) |
| 22 | 1, 21, 4 | cvrlt 39271 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → 𝑋(lt‘𝐾)(𝑃 ∨ 𝑄)) |
| 23 | 22 | ex 412 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋𝐶(𝑃 ∨ 𝑄) → 𝑋(lt‘𝐾)(𝑃 ∨ 𝑄))) |
| 24 | 9, 10, 20, 23 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑃 ∨ 𝑄) → 𝑋(lt‘𝐾)(𝑃 ∨ 𝑄))) |
| 25 | 1, 21, 2, 3, 5 | cvrat 39424 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑋(lt‘𝐾)(𝑃 ∨ 𝑄)) → 𝑋 ∈ 𝐴)) |
| 26 | 25 | expcomd 416 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋(lt‘𝐾)(𝑃 ∨ 𝑄) → (𝑋 ≠ (0.‘𝐾) → 𝑋 ∈ 𝐴))) |
| 27 | 24, 26 | syld 47 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑃 ∨ 𝑄) → (𝑋 ≠ (0.‘𝐾) → 𝑋 ∈ 𝐴))) |
| 28 | 27 | imp 406 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 ≠ (0.‘𝐾) → 𝑋 ∈ 𝐴)) |
| 29 | 8, 28 | sylbird 260 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑃 ≠ 𝑄 → 𝑋 ∈ 𝐴)) |
| 30 | 29 | ex 412 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑃 ∨ 𝑄) → (𝑃 ≠ 𝑄 → 𝑋 ∈ 𝐴))) |
| 31 | 30 | com23 86 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ≠ 𝑄 → (𝑋𝐶(𝑃 ∨ 𝑄) → 𝑋 ∈ 𝐴))) |
| 32 | 31 | impd 410 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → 𝑋 ∈ 𝐴)) |
| 33 | 32 | 3impia 1118 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶(𝑃 ∨ 𝑄))) → 𝑋 ∈ 𝐴) |