Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat2 Structured version   Visualization version   GIF version

Theorem cvrat2 37370
Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. (atcvat2i 30650 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat2.b 𝐵 = (Base‘𝐾)
cvrat2.j = (join‘𝐾)
cvrat2.c 𝐶 = ( ⋖ ‘𝐾)
cvrat2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄𝑋𝐶(𝑃 𝑄))) → 𝑋𝐴)

Proof of Theorem cvrat2
StepHypRef Expression
1 cvrat2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2 cvrat2.j . . . . . . . . 9 = (join‘𝐾)
3 eqid 2738 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
4 cvrat2.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
5 cvrat2.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5atcvrj0 37369 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = (0.‘𝐾) ↔ 𝑃 = 𝑄))
763expa 1116 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = (0.‘𝐾) ↔ 𝑃 = 𝑄))
87necon3bid 2987 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 ≠ (0.‘𝐾) ↔ 𝑃𝑄))
9 simpl 482 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
10 simpr1 1192 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
11 hllat 37304 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1211adantr 480 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
13 simpr2 1193 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
141, 5atbase 37230 . . . . . . . . . . 11 (𝑃𝐴𝑃𝐵)
1513, 14syl 17 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
16 simpr3 1194 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
171, 5atbase 37230 . . . . . . . . . . 11 (𝑄𝐴𝑄𝐵)
1816, 17syl 17 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
191, 2latjcl 18072 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
2012, 15, 18, 19syl3anc 1369 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
21 eqid 2738 . . . . . . . . . . 11 (lt‘𝐾) = (lt‘𝐾)
221, 21, 4cvrlt 37211 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋𝐶(𝑃 𝑄)) → 𝑋(lt‘𝐾)(𝑃 𝑄))
2322ex 412 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋𝐶(𝑃 𝑄) → 𝑋(lt‘𝐾)(𝑃 𝑄)))
249, 10, 20, 23syl3anc 1369 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → 𝑋(lt‘𝐾)(𝑃 𝑄)))
251, 21, 2, 3, 5cvrat 37363 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑋(lt‘𝐾)(𝑃 𝑄)) → 𝑋𝐴))
2625expcomd 416 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(lt‘𝐾)(𝑃 𝑄) → (𝑋 ≠ (0.‘𝐾) → 𝑋𝐴)))
2724, 26syld 47 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑋 ≠ (0.‘𝐾) → 𝑋𝐴)))
2827imp 406 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 ≠ (0.‘𝐾) → 𝑋𝐴))
298, 28sylbird 259 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑃𝑄𝑋𝐴))
3029ex 412 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑃𝑄𝑋𝐴)))
3130com23 86 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (𝑋𝐶(𝑃 𝑄) → 𝑋𝐴)))
3231impd 410 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄𝑋𝐶(𝑃 𝑄)) → 𝑋𝐴))
33323impia 1115 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄𝑋𝐶(𝑃 𝑄))) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  ltcplt 17941  joincjn 17944  0.cp0 18056  Latclat 18064  ccvr 37203  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  cvrat3  37383  atcvrlln  37461  lncvrelatN  37722
  Copyright terms: Public domain W3C validator