Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjidm | Structured version Visualization version GIF version |
Description: Idempotence of join operation. Frequently-used special case of latjcom 18214 for atoms. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatjidm | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37577 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2736 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37503 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
5 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
6 | 2, 5 | latjidm 18229 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑋) = 𝑋) |
7 | 1, 4, 6 | syl2an 597 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 joincjn 18078 Latclat 18198 Atomscatm 37477 HLchlt 37564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-proset 18062 df-poset 18080 df-lub 18113 df-glb 18114 df-join 18115 df-meet 18116 df-lat 18199 df-ats 37481 df-atl 37512 df-cvlat 37536 df-hlat 37565 |
This theorem is referenced by: atcvr0eq 37640 lnnat 37641 atcvrj0 37642 atltcvr 37649 3dim2 37682 3dim3 37683 islln2a 37731 2at0mat0 37739 lplnnle2at 37755 lplnnleat 37756 islpln2a 37762 lvolnle3at 37796 lvolnleat 37797 lvolnlelln 37798 2atnelvolN 37801 islvol2aN 37806 dalempnes 37865 dalemqnet 37866 2llnma3r 38002 dalawlem12 38096 4atex2-0aOLDN 38292 idltrn 38364 trl0 38384 trlval3 38401 cdleme3b 38443 cdleme11h 38480 cdleme16c 38494 cdleme18b 38506 cdleme20j 38532 cdleme42ke 38699 cdleme50trn3 38767 cdlemb3 38820 cdlemg8a 38841 trlcone 38942 dia2dimlem13 39290 |
Copyright terms: Public domain | W3C validator |