Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatjidm Structured version   Visualization version   GIF version

Theorem hlatjidm 39325
Description: Idempotence of join operation. Frequently-used special case of latjcom 18517 for atoms. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
hlatjcom.j = (join‘𝐾)
hlatjcom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatjidm ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 𝑋) = 𝑋)

Proof of Theorem hlatjidm
StepHypRef Expression
1 hllat 39319 . 2 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2740 . . 3 (Base‘𝐾) = (Base‘𝐾)
3 hlatjcom.a . . 3 𝐴 = (Atoms‘𝐾)
42, 3atbase 39245 . 2 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
5 hlatjcom.j . . 3 = (join‘𝐾)
62, 5latjidm 18532 . 2 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 𝑋) = 𝑋)
71, 4, 6syl2an 595 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  joincjn 18381  Latclat 18501  Atomscatm 39219  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-lat 18502  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307
This theorem is referenced by:  atcvr0eq  39383  lnnat  39384  atcvrj0  39385  atltcvr  39392  3dim2  39425  3dim3  39426  islln2a  39474  2at0mat0  39482  lplnnle2at  39498  lplnnleat  39499  islpln2a  39505  lvolnle3at  39539  lvolnleat  39540  lvolnlelln  39541  2atnelvolN  39544  islvol2aN  39549  dalempnes  39608  dalemqnet  39609  2llnma3r  39745  dalawlem12  39839  4atex2-0aOLDN  40035  idltrn  40107  trl0  40127  trlval3  40144  cdleme3b  40186  cdleme11h  40223  cdleme16c  40237  cdleme18b  40249  cdleme20j  40275  cdleme42ke  40442  cdleme50trn3  40510  cdlemb3  40563  cdlemg8a  40584  trlcone  40685  dia2dimlem13  41033
  Copyright terms: Public domain W3C validator