Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatjidm Structured version   Visualization version   GIF version

Theorem hlatjidm 36492
Description: Idempotence of join operation. Frequently-used special case of latjcom 17661 for atoms. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
hlatjcom.j = (join‘𝐾)
hlatjcom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatjidm ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 𝑋) = 𝑋)

Proof of Theorem hlatjidm
StepHypRef Expression
1 hllat 36486 . 2 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2819 . . 3 (Base‘𝐾) = (Base‘𝐾)
3 hlatjcom.a . . 3 𝐴 = (Atoms‘𝐾)
42, 3atbase 36412 . 2 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
5 hlatjcom.j . . 3 = (join‘𝐾)
62, 5latjidm 17676 . 2 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 𝑋) = 𝑋)
71, 4, 6syl2an 597 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  cfv 6348  (class class class)co 7148  Basecbs 16475  joincjn 17546  Latclat 17647  Atomscatm 36386  HLchlt 36473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-proset 17530  df-poset 17548  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-lat 17648  df-ats 36390  df-atl 36421  df-cvlat 36445  df-hlat 36474
This theorem is referenced by:  atcvr0eq  36549  lnnat  36550  atcvrj0  36551  atltcvr  36558  3dim2  36591  3dim3  36592  islln2a  36640  2at0mat0  36648  lplnnle2at  36664  lplnnleat  36665  islpln2a  36671  lvolnle3at  36705  lvolnleat  36706  lvolnlelln  36707  2atnelvolN  36710  islvol2aN  36715  dalempnes  36774  dalemqnet  36775  2llnma3r  36911  dalawlem12  37005  4atex2-0aOLDN  37201  idltrn  37273  trl0  37293  trlval3  37310  cdleme3b  37352  cdleme11h  37389  cdleme16c  37403  cdleme18b  37415  cdleme20j  37441  cdleme42ke  37608  cdleme50trn3  37676  cdlemb3  37729  cdlemg8a  37750  trlcone  37851  dia2dimlem13  38199
  Copyright terms: Public domain W3C validator