| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjidm | Structured version Visualization version GIF version | ||
| Description: Idempotence of join operation. Frequently-used special case of latjcom 18353 for atoms. (Contributed by NM, 15-Jul-2012.) |
| Ref | Expression |
|---|---|
| hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
| hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatjidm | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39352 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39278 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 6 | 2, 5 | latjidm 18368 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑋) = 𝑋) |
| 7 | 1, 4, 6 | syl2an 596 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 joincjn 18217 Latclat 18337 Atomscatm 39252 HLchlt 39339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 df-ats 39256 df-atl 39287 df-cvlat 39311 df-hlat 39340 |
| This theorem is referenced by: atcvr0eq 39415 lnnat 39416 atcvrj0 39417 atltcvr 39424 3dim2 39457 3dim3 39458 islln2a 39506 2at0mat0 39514 lplnnle2at 39530 lplnnleat 39531 islpln2a 39537 lvolnle3at 39571 lvolnleat 39572 lvolnlelln 39573 2atnelvolN 39576 islvol2aN 39581 dalempnes 39640 dalemqnet 39641 2llnma3r 39777 dalawlem12 39871 4atex2-0aOLDN 40067 idltrn 40139 trl0 40159 trlval3 40176 cdleme3b 40218 cdleme11h 40255 cdleme16c 40269 cdleme18b 40281 cdleme20j 40307 cdleme42ke 40474 cdleme50trn3 40542 cdlemb3 40595 cdlemg8a 40616 trlcone 40717 dia2dimlem13 41065 |
| Copyright terms: Public domain | W3C validator |