Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjidm | Structured version Visualization version GIF version |
Description: Idempotence of join operation. Frequently-used special case of latjcom 18146 for atoms. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatjidm | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37356 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2739 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37282 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
5 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
6 | 2, 5 | latjidm 18161 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑋) = 𝑋) |
7 | 1, 4, 6 | syl2an 595 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 joincjn 18010 Latclat 18130 Atomscatm 37256 HLchlt 37343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-proset 17994 df-poset 18012 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-lat 18131 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 |
This theorem is referenced by: atcvr0eq 37419 lnnat 37420 atcvrj0 37421 atltcvr 37428 3dim2 37461 3dim3 37462 islln2a 37510 2at0mat0 37518 lplnnle2at 37534 lplnnleat 37535 islpln2a 37541 lvolnle3at 37575 lvolnleat 37576 lvolnlelln 37577 2atnelvolN 37580 islvol2aN 37585 dalempnes 37644 dalemqnet 37645 2llnma3r 37781 dalawlem12 37875 4atex2-0aOLDN 38071 idltrn 38143 trl0 38163 trlval3 38180 cdleme3b 38222 cdleme11h 38259 cdleme16c 38273 cdleme18b 38285 cdleme20j 38311 cdleme42ke 38478 cdleme50trn3 38546 cdlemb3 38599 cdlemg8a 38620 trlcone 38721 dia2dimlem13 39069 |
Copyright terms: Public domain | W3C validator |