![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjidm | Structured version Visualization version GIF version |
Description: Idempotence of join operation. Frequently-used special case of latjcom 18517 for atoms. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatjidm | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 39319 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 39245 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
5 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
6 | 2, 5 | latjidm 18532 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑋) = 𝑋) |
7 | 1, 4, 6 | syl2an 595 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 joincjn 18381 Latclat 18501 Atomscatm 39219 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-lat 18502 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 |
This theorem is referenced by: atcvr0eq 39383 lnnat 39384 atcvrj0 39385 atltcvr 39392 3dim2 39425 3dim3 39426 islln2a 39474 2at0mat0 39482 lplnnle2at 39498 lplnnleat 39499 islpln2a 39505 lvolnle3at 39539 lvolnleat 39540 lvolnlelln 39541 2atnelvolN 39544 islvol2aN 39549 dalempnes 39608 dalemqnet 39609 2llnma3r 39745 dalawlem12 39839 4atex2-0aOLDN 40035 idltrn 40107 trl0 40127 trlval3 40144 cdleme3b 40186 cdleme11h 40223 cdleme16c 40237 cdleme18b 40249 cdleme20j 40275 cdleme42ke 40442 cdleme50trn3 40510 cdlemb3 40563 cdlemg8a 40584 trlcone 40685 dia2dimlem13 41033 |
Copyright terms: Public domain | W3C validator |