![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjidm | Structured version Visualization version GIF version |
Description: Idempotence of join operation. Frequently-used special case of latjcom 18400 for atoms. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | β’ β¨ = (joinβπΎ) |
hlatjcom.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlatjidm | β’ ((πΎ β HL β§ π β π΄) β (π β¨ π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38233 | . 2 β’ (πΎ β HL β πΎ β Lat) | |
2 | eqid 2733 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | hlatjcom.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | atbase 38159 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
5 | hlatjcom.j | . . 3 β’ β¨ = (joinβπΎ) | |
6 | 2, 5 | latjidm 18415 | . 2 β’ ((πΎ β Lat β§ π β (BaseβπΎ)) β (π β¨ π) = π) |
7 | 1, 4, 6 | syl2an 597 | 1 β’ ((πΎ β HL β§ π β π΄) β (π β¨ π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Basecbs 17144 joincjn 18264 Latclat 18384 Atomscatm 38133 HLchlt 38220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-proset 18248 df-poset 18266 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-lat 18385 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 |
This theorem is referenced by: atcvr0eq 38297 lnnat 38298 atcvrj0 38299 atltcvr 38306 3dim2 38339 3dim3 38340 islln2a 38388 2at0mat0 38396 lplnnle2at 38412 lplnnleat 38413 islpln2a 38419 lvolnle3at 38453 lvolnleat 38454 lvolnlelln 38455 2atnelvolN 38458 islvol2aN 38463 dalempnes 38522 dalemqnet 38523 2llnma3r 38659 dalawlem12 38753 4atex2-0aOLDN 38949 idltrn 39021 trl0 39041 trlval3 39058 cdleme3b 39100 cdleme11h 39137 cdleme16c 39151 cdleme18b 39163 cdleme20j 39189 cdleme42ke 39356 cdleme50trn3 39424 cdlemb3 39477 cdlemg8a 39498 trlcone 39599 dia2dimlem13 39947 |
Copyright terms: Public domain | W3C validator |