| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjidm | Structured version Visualization version GIF version | ||
| Description: Idempotence of join operation. Frequently-used special case of latjcom 18455 for atoms. (Contributed by NM, 15-Jul-2012.) |
| Ref | Expression |
|---|---|
| hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
| hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatjidm | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39327 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39253 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 6 | 2, 5 | latjidm 18470 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑋) = 𝑋) |
| 7 | 1, 4, 6 | syl2an 596 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴) → (𝑋 ∨ 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 joincjn 18321 Latclat 18439 Atomscatm 39227 HLchlt 39314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-proset 18304 df-poset 18323 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-lat 18440 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 |
| This theorem is referenced by: atcvr0eq 39391 lnnat 39392 atcvrj0 39393 atltcvr 39400 3dim2 39433 3dim3 39434 islln2a 39482 2at0mat0 39490 lplnnle2at 39506 lplnnleat 39507 islpln2a 39513 lvolnle3at 39547 lvolnleat 39548 lvolnlelln 39549 2atnelvolN 39552 islvol2aN 39557 dalempnes 39616 dalemqnet 39617 2llnma3r 39753 dalawlem12 39847 4atex2-0aOLDN 40043 idltrn 40115 trl0 40135 trlval3 40152 cdleme3b 40194 cdleme11h 40231 cdleme16c 40245 cdleme18b 40257 cdleme20j 40283 cdleme42ke 40450 cdleme50trn3 40518 cdlemb3 40571 cdlemg8a 40592 trlcone 40693 dia2dimlem13 41041 |
| Copyright terms: Public domain | W3C validator |