| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difinf | Structured version Visualization version GIF version | ||
| Description: An infinite set 𝐴 minus a finite set is infinite. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| difinf | ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi 9080 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin) | |
| 2 | undif1 4426 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
| 3 | 2 | eleq1i 2822 | . . . . . 6 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin ↔ (𝐴 ∪ 𝐵) ∈ Fin) |
| 4 | unfir 9192 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | |
| 5 | 4 | simpld 494 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → 𝐴 ∈ Fin) |
| 6 | 3, 5 | sylbi 217 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin → 𝐴 ∈ Fin) |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
| 8 | 7 | expcom 413 | . . 3 ⊢ (𝐵 ∈ Fin → ((𝐴 ∖ 𝐵) ∈ Fin → 𝐴 ∈ Fin)) |
| 9 | 8 | con3d 152 | . 2 ⊢ (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → ¬ (𝐴 ∖ 𝐵) ∈ Fin)) |
| 10 | 9 | impcom 407 | 1 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∖ cdif 3899 ∪ cun 3900 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-fin 8873 |
| This theorem is referenced by: ackbij1lem18 10124 bitsf1 16354 cusgrfilem3 29434 diffib 32496 hasheuni 34093 fineqvnttrclse 35132 topdifinffinlem 37380 eldioph2lem2 42793 |
| Copyright terms: Public domain | W3C validator |