![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difinf | Structured version Visualization version GIF version |
Description: An infinite set 𝐴 minus a finite set is infinite. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
difinf | ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfi 9160 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin) | |
2 | undif1 4473 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
3 | 2 | eleq1i 2825 | . . . . . 6 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin ↔ (𝐴 ∪ 𝐵) ∈ Fin) |
4 | unfir 9302 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | |
5 | 4 | simpld 496 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → 𝐴 ∈ Fin) |
6 | 3, 5 | sylbi 216 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin → 𝐴 ∈ Fin) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
8 | 7 | expcom 415 | . . 3 ⊢ (𝐵 ∈ Fin → ((𝐴 ∖ 𝐵) ∈ Fin → 𝐴 ∈ Fin)) |
9 | 8 | con3d 152 | . 2 ⊢ (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → ¬ (𝐴 ∖ 𝐵) ∈ Fin)) |
10 | 9 | impcom 409 | 1 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ∖ cdif 3943 ∪ cun 3944 Fincfn 8927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-br 5145 df-opab 5207 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-om 7843 df-1o 8453 df-en 8928 df-fin 8931 |
This theorem is referenced by: ackbij1lem18 10219 bitsf1 16374 cusgrfilem3 28681 diffib 31724 hasheuni 33014 topdifinffinlem 36133 eldioph2lem2 41370 |
Copyright terms: Public domain | W3C validator |