Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difinf | Structured version Visualization version GIF version |
Description: An infinite set 𝐴 minus a finite set is infinite. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
difinf | ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfi 8917 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin) | |
2 | undif1 4406 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
3 | 2 | eleq1i 2829 | . . . . . 6 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin ↔ (𝐴 ∪ 𝐵) ∈ Fin) |
4 | unfir 9012 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | |
5 | 4 | simpld 494 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → 𝐴 ∈ Fin) |
6 | 3, 5 | sylbi 216 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin → 𝐴 ∈ Fin) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
8 | 7 | expcom 413 | . . 3 ⊢ (𝐵 ∈ Fin → ((𝐴 ∖ 𝐵) ∈ Fin → 𝐴 ∈ Fin)) |
9 | 8 | con3d 152 | . 2 ⊢ (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → ¬ (𝐴 ∖ 𝐵) ∈ Fin)) |
10 | 9 | impcom 407 | 1 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 |
This theorem is referenced by: ackbij1lem18 9924 bitsf1 16081 cusgrfilem3 27727 diffib 30770 hasheuni 31953 topdifinffinlem 35445 eldioph2lem2 40499 |
Copyright terms: Public domain | W3C validator |