![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difinf | Structured version Visualization version GIF version |
Description: An infinite set 𝐴 minus a finite set is infinite. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
difinf | ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfi 9123 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin) | |
2 | undif1 4440 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
3 | 2 | eleq1i 2829 | . . . . . 6 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin ↔ (𝐴 ∪ 𝐵) ∈ Fin) |
4 | unfir 9265 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | |
5 | 4 | simpld 496 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → 𝐴 ∈ Fin) |
6 | 3, 5 | sylbi 216 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ Fin → 𝐴 ∈ Fin) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
8 | 7 | expcom 415 | . . 3 ⊢ (𝐵 ∈ Fin → ((𝐴 ∖ 𝐵) ∈ Fin → 𝐴 ∈ Fin)) |
9 | 8 | con3d 152 | . 2 ⊢ (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → ¬ (𝐴 ∖ 𝐵) ∈ Fin)) |
10 | 9 | impcom 409 | 1 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ∖ cdif 3912 ∪ cun 3913 Fincfn 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-om 7808 df-1o 8417 df-en 8891 df-fin 8894 |
This theorem is referenced by: ackbij1lem18 10180 bitsf1 16333 cusgrfilem3 28447 diffib 31490 hasheuni 32724 topdifinffinlem 35847 eldioph2lem2 41113 |
Copyright terms: Public domain | W3C validator |