| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > diffi | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is finite, (𝐴 ∖ 𝐵) is finite. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| diffi | ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4135 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | ssfi 9214 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∖ 𝐵) ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ Fin) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) |
| Copyright terms: Public domain | W3C validator |