Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > diffi | Structured version Visualization version GIF version |
Description: If 𝐴 is finite, (𝐴 ∖ 𝐵) is finite. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
diffi | ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4072 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | ssfi 8994 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∖ 𝐵) ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ Fin) | |
3 | 1, 2 | mpan2 689 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) |
Copyright terms: Public domain | W3C validator |