Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . 3
β’ (πΊdom DProd π β πΊdom DProd π) |
2 | | eqidd 2732 |
. . 3
β’ (πΊdom DProd π β dom π = dom π) |
3 | | dprdgrp 19917 |
. . . . 5
β’ (πΊdom DProd π β πΊ β Grp) |
4 | | eqid 2731 |
. . . . . 6
β’
(BaseβπΊ) =
(BaseβπΊ) |
5 | 4 | subgacs 19078 |
. . . . 5
β’ (πΊ β Grp β
(SubGrpβπΊ) β
(ACSβ(BaseβπΊ))) |
6 | | acsmre 17601 |
. . . . 5
β’
((SubGrpβπΊ)
β (ACSβ(BaseβπΊ)) β (SubGrpβπΊ) β (Mooreβ(BaseβπΊ))) |
7 | 3, 5, 6 | 3syl 18 |
. . . 4
β’ (πΊdom DProd π β (SubGrpβπΊ) β (Mooreβ(BaseβπΊ))) |
8 | | dprdf 19918 |
. . . . . . . 8
β’ (πΊdom DProd π β π:dom πβΆ(SubGrpβπΊ)) |
9 | 8 | ffnd 6718 |
. . . . . . 7
β’ (πΊdom DProd π β π Fn dom π) |
10 | | fniunfv 7249 |
. . . . . . 7
β’ (π Fn dom π β βͺ
π β dom π(πβπ) = βͺ ran π) |
11 | 9, 10 | syl 17 |
. . . . . 6
β’ (πΊdom DProd π β βͺ
π β dom π(πβπ) = βͺ ran π) |
12 | | simpl 482 |
. . . . . . . . 9
β’ ((πΊdom DProd π β§ π β dom π) β πΊdom DProd π) |
13 | | eqidd 2732 |
. . . . . . . . 9
β’ ((πΊdom DProd π β§ π β dom π) β dom π = dom π) |
14 | | simpr 484 |
. . . . . . . . 9
β’ ((πΊdom DProd π β§ π β dom π) β π β dom π) |
15 | 12, 13, 14 | dprdub 19937 |
. . . . . . . 8
β’ ((πΊdom DProd π β§ π β dom π) β (πβπ) β (πΊ DProd π)) |
16 | 15 | ralrimiva 3145 |
. . . . . . 7
β’ (πΊdom DProd π β βπ β dom π(πβπ) β (πΊ DProd π)) |
17 | | iunss 5048 |
. . . . . . 7
β’ (βͺ π β dom π(πβπ) β (πΊ DProd π) β βπ β dom π(πβπ) β (πΊ DProd π)) |
18 | 16, 17 | sylibr 233 |
. . . . . 6
β’ (πΊdom DProd π β βͺ
π β dom π(πβπ) β (πΊ DProd π)) |
19 | 11, 18 | eqsstrrd 4021 |
. . . . 5
β’ (πΊdom DProd π β βͺ ran
π β (πΊ DProd π)) |
20 | 4 | dprdssv 19928 |
. . . . 5
β’ (πΊ DProd π) β (BaseβπΊ) |
21 | 19, 20 | sstrdi 3994 |
. . . 4
β’ (πΊdom DProd π β βͺ ran
π β (BaseβπΊ)) |
22 | | dprdspan.k |
. . . . 5
β’ πΎ =
(mrClsβ(SubGrpβπΊ)) |
23 | 22 | mrccl 17560 |
. . . 4
β’
(((SubGrpβπΊ)
β (Mooreβ(BaseβπΊ)) β§ βͺ ran
π β (BaseβπΊ)) β (πΎββͺ ran
π) β
(SubGrpβπΊ)) |
24 | 7, 21, 23 | syl2anc 583 |
. . 3
β’ (πΊdom DProd π β (πΎββͺ ran
π) β
(SubGrpβπΊ)) |
25 | | eqimss 4040 |
. . . . . . 7
β’ (βͺ π β dom π(πβπ) = βͺ ran π β βͺ π β dom π(πβπ) β βͺ ran
π) |
26 | 11, 25 | syl 17 |
. . . . . 6
β’ (πΊdom DProd π β βͺ
π β dom π(πβπ) β βͺ ran
π) |
27 | | iunss 5048 |
. . . . . 6
β’ (βͺ π β dom π(πβπ) β βͺ ran
π β βπ β dom π(πβπ) β βͺ ran
π) |
28 | 26, 27 | sylib 217 |
. . . . 5
β’ (πΊdom DProd π β βπ β dom π(πβπ) β βͺ ran
π) |
29 | 28 | r19.21bi 3247 |
. . . 4
β’ ((πΊdom DProd π β§ π β dom π) β (πβπ) β βͺ ran
π) |
30 | 7, 22, 21 | mrcssidd 17574 |
. . . . 5
β’ (πΊdom DProd π β βͺ ran
π β (πΎββͺ ran π)) |
31 | 30 | adantr 480 |
. . . 4
β’ ((πΊdom DProd π β§ π β dom π) β βͺ ran
π β (πΎββͺ ran π)) |
32 | 29, 31 | sstrd 3992 |
. . 3
β’ ((πΊdom DProd π β§ π β dom π) β (πβπ) β (πΎββͺ ran
π)) |
33 | 1, 2, 24, 32 | dprdlub 19938 |
. 2
β’ (πΊdom DProd π β (πΊ DProd π) β (πΎββͺ ran
π)) |
34 | | dprdsubg 19936 |
. . 3
β’ (πΊdom DProd π β (πΊ DProd π) β (SubGrpβπΊ)) |
35 | 22 | mrcsscl 17569 |
. . 3
β’
(((SubGrpβπΊ)
β (Mooreβ(BaseβπΊ)) β§ βͺ ran
π β (πΊ DProd π) β§ (πΊ DProd π) β (SubGrpβπΊ)) β (πΎββͺ ran
π) β (πΊ DProd π)) |
36 | 7, 19, 34, 35 | syl3anc 1370 |
. 2
β’ (πΊdom DProd π β (πΎββͺ ran
π) β (πΊ DProd π)) |
37 | 33, 36 | eqssd 3999 |
1
β’ (πΊdom DProd π β (πΊ DProd π) = (πΎββͺ ran
π)) |