| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdspan | Structured version Visualization version GIF version | ||
| Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdspan.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| dprdspan | ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐺dom DProd 𝑆 → 𝐺dom DProd 𝑆) | |
| 2 | eqidd 2732 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆) | |
| 3 | dprdgrp 19917 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | 4 | subgacs 19071 | . . . . 5 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
| 6 | acsmre 17555 | . . . . 5 ⊢ ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) | |
| 7 | 3, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 8 | dprdf 19918 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | |
| 9 | 8 | ffnd 6652 | . . . . . . 7 ⊢ (𝐺dom DProd 𝑆 → 𝑆 Fn dom 𝑆) |
| 10 | fniunfv 7181 | . . . . . . 7 ⊢ (𝑆 Fn dom 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆) |
| 12 | simpl 482 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → 𝐺dom DProd 𝑆) | |
| 13 | eqidd 2732 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → dom 𝑆 = dom 𝑆) | |
| 14 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → 𝑘 ∈ dom 𝑆) | |
| 15 | 12, 13, 14 | dprdub 19937 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
| 16 | 15 | ralrimiva 3124 | . . . . . . 7 ⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
| 17 | iunss 4994 | . . . . . . 7 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆) ↔ ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) | |
| 18 | 16, 17 | sylibr 234 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
| 19 | 11, 18 | eqsstrrd 3970 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (𝐺 DProd 𝑆)) |
| 20 | 4 | dprdssv 19928 | . . . . 5 ⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
| 21 | 19, 20 | sstrdi 3947 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (Base‘𝐺)) |
| 22 | dprdspan.k | . . . . 5 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 23 | 22 | mrccl 17514 | . . . 4 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran 𝑆 ⊆ (Base‘𝐺)) → (𝐾‘∪ ran 𝑆) ∈ (SubGrp‘𝐺)) |
| 24 | 7, 21, 23 | syl2anc 584 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐾‘∪ ran 𝑆) ∈ (SubGrp‘𝐺)) |
| 25 | eqimss 3993 | . . . . . . 7 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) | |
| 26 | 11, 25 | syl 17 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
| 27 | iunss 4994 | . . . . . 6 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆 ↔ ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) | |
| 28 | 26, 27 | sylib 218 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
| 29 | 28 | r19.21bi 3224 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
| 30 | 7, 22, 21 | mrcssidd 17528 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (𝐾‘∪ ran 𝑆)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → ∪ ran 𝑆 ⊆ (𝐾‘∪ ran 𝑆)) |
| 32 | 29, 31 | sstrd 3945 | . . 3 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ (𝐾‘∪ ran 𝑆)) |
| 33 | 1, 2, 24, 32 | dprdlub 19938 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (𝐾‘∪ ran 𝑆)) |
| 34 | dprdsubg 19936 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) | |
| 35 | 22 | mrcsscl 17523 | . . 3 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran 𝑆 ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (𝐾‘∪ ran 𝑆) ⊆ (𝐺 DProd 𝑆)) |
| 36 | 7, 19, 34, 35 | syl3anc 1373 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐾‘∪ ran 𝑆) ⊆ (𝐺 DProd 𝑆)) |
| 37 | 33, 36 | eqssd 3952 | 1 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 ∪ cuni 4859 ∪ ciun 4941 class class class wbr 5091 dom cdm 5616 ran crn 5617 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Moorecmre 17481 mrClscmrc 17482 ACScacs 17484 Grpcgrp 18843 SubGrpcsubg 19030 DProd cdprd 19905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-gsum 17343 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-gim 19169 df-cntz 19227 df-oppg 19256 df-cmn 19692 df-dprd 19907 |
| This theorem is referenced by: dprdres 19940 dprdf1o 19944 subgdprd 19947 dprdsn 19948 dprd2dlem1 19953 dprd2da 19954 dprd2db 19955 dmdprdsplit2lem 19957 |
| Copyright terms: Public domain | W3C validator |