| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdspan | Structured version Visualization version GIF version | ||
| Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdspan.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| dprdspan | ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐺dom DProd 𝑆 → 𝐺dom DProd 𝑆) | |
| 2 | eqidd 2731 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆) | |
| 3 | dprdgrp 19944 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | 4 | subgacs 19100 | . . . . 5 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
| 6 | acsmre 17620 | . . . . 5 ⊢ ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) | |
| 7 | 3, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 8 | dprdf 19945 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | |
| 9 | 8 | ffnd 6692 | . . . . . . 7 ⊢ (𝐺dom DProd 𝑆 → 𝑆 Fn dom 𝑆) |
| 10 | fniunfv 7224 | . . . . . . 7 ⊢ (𝑆 Fn dom 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆) |
| 12 | simpl 482 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → 𝐺dom DProd 𝑆) | |
| 13 | eqidd 2731 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → dom 𝑆 = dom 𝑆) | |
| 14 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → 𝑘 ∈ dom 𝑆) | |
| 15 | 12, 13, 14 | dprdub 19964 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
| 16 | 15 | ralrimiva 3126 | . . . . . . 7 ⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
| 17 | iunss 5012 | . . . . . . 7 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆) ↔ ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) | |
| 18 | 16, 17 | sylibr 234 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
| 19 | 11, 18 | eqsstrrd 3985 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (𝐺 DProd 𝑆)) |
| 20 | 4 | dprdssv 19955 | . . . . 5 ⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
| 21 | 19, 20 | sstrdi 3962 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (Base‘𝐺)) |
| 22 | dprdspan.k | . . . . 5 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 23 | 22 | mrccl 17579 | . . . 4 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran 𝑆 ⊆ (Base‘𝐺)) → (𝐾‘∪ ran 𝑆) ∈ (SubGrp‘𝐺)) |
| 24 | 7, 21, 23 | syl2anc 584 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐾‘∪ ran 𝑆) ∈ (SubGrp‘𝐺)) |
| 25 | eqimss 4008 | . . . . . . 7 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) | |
| 26 | 11, 25 | syl 17 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
| 27 | iunss 5012 | . . . . . 6 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆 ↔ ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) | |
| 28 | 26, 27 | sylib 218 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
| 29 | 28 | r19.21bi 3230 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
| 30 | 7, 22, 21 | mrcssidd 17593 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (𝐾‘∪ ran 𝑆)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → ∪ ran 𝑆 ⊆ (𝐾‘∪ ran 𝑆)) |
| 32 | 29, 31 | sstrd 3960 | . . 3 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ (𝐾‘∪ ran 𝑆)) |
| 33 | 1, 2, 24, 32 | dprdlub 19965 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (𝐾‘∪ ran 𝑆)) |
| 34 | dprdsubg 19963 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) | |
| 35 | 22 | mrcsscl 17588 | . . 3 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran 𝑆 ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (𝐾‘∪ ran 𝑆) ⊆ (𝐺 DProd 𝑆)) |
| 36 | 7, 19, 34, 35 | syl3anc 1373 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐾‘∪ ran 𝑆) ⊆ (𝐺 DProd 𝑆)) |
| 37 | 33, 36 | eqssd 3967 | 1 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ∪ cuni 4874 ∪ ciun 4958 class class class wbr 5110 dom cdm 5641 ran crn 5642 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Moorecmre 17550 mrClscmrc 17551 ACScacs 17553 Grpcgrp 18872 SubGrpcsubg 19059 DProd cdprd 19932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-gsum 17412 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-gim 19198 df-cntz 19256 df-oppg 19285 df-cmn 19719 df-dprd 19934 |
| This theorem is referenced by: dprdres 19967 dprdf1o 19971 subgdprd 19974 dprdsn 19975 dprd2dlem1 19980 dprd2da 19981 dprd2db 19982 dmdprdsplit2lem 19984 |
| Copyright terms: Public domain | W3C validator |