Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdspan | Structured version Visualization version GIF version |
Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdspan.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
dprdspan | ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐺dom DProd 𝑆 → 𝐺dom DProd 𝑆) | |
2 | eqidd 2739 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆) | |
3 | dprdgrp 19608 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
4 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 4 | subgacs 18789 | . . . . 5 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
6 | acsmre 17361 | . . . . 5 ⊢ ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) | |
7 | 3, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
8 | dprdf 19609 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | |
9 | 8 | ffnd 6601 | . . . . . . 7 ⊢ (𝐺dom DProd 𝑆 → 𝑆 Fn dom 𝑆) |
10 | fniunfv 7120 | . . . . . . 7 ⊢ (𝑆 Fn dom 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆) |
12 | simpl 483 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → 𝐺dom DProd 𝑆) | |
13 | eqidd 2739 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → dom 𝑆 = dom 𝑆) | |
14 | simpr 485 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → 𝑘 ∈ dom 𝑆) | |
15 | 12, 13, 14 | dprdub 19628 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
16 | 15 | ralrimiva 3103 | . . . . . . 7 ⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
17 | iunss 4975 | . . . . . . 7 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆) ↔ ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) | |
18 | 16, 17 | sylibr 233 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
19 | 11, 18 | eqsstrrd 3960 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (𝐺 DProd 𝑆)) |
20 | 4 | dprdssv 19619 | . . . . 5 ⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
21 | 19, 20 | sstrdi 3933 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (Base‘𝐺)) |
22 | dprdspan.k | . . . . 5 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
23 | 22 | mrccl 17320 | . . . 4 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran 𝑆 ⊆ (Base‘𝐺)) → (𝐾‘∪ ran 𝑆) ∈ (SubGrp‘𝐺)) |
24 | 7, 21, 23 | syl2anc 584 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐾‘∪ ran 𝑆) ∈ (SubGrp‘𝐺)) |
25 | eqimss 3977 | . . . . . . 7 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) | |
26 | 11, 25 | syl 17 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
27 | iunss 4975 | . . . . . 6 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆 ↔ ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) | |
28 | 26, 27 | sylib 217 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
29 | 28 | r19.21bi 3134 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
30 | 7, 22, 21 | mrcssidd 17334 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (𝐾‘∪ ran 𝑆)) |
31 | 30 | adantr 481 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → ∪ ran 𝑆 ⊆ (𝐾‘∪ ran 𝑆)) |
32 | 29, 31 | sstrd 3931 | . . 3 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ (𝐾‘∪ ran 𝑆)) |
33 | 1, 2, 24, 32 | dprdlub 19629 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (𝐾‘∪ ran 𝑆)) |
34 | dprdsubg 19627 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) | |
35 | 22 | mrcsscl 17329 | . . 3 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran 𝑆 ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (𝐾‘∪ ran 𝑆) ⊆ (𝐺 DProd 𝑆)) |
36 | 7, 19, 34, 35 | syl3anc 1370 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐾‘∪ ran 𝑆) ⊆ (𝐺 DProd 𝑆)) |
37 | 33, 36 | eqssd 3938 | 1 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ∪ cuni 4839 ∪ ciun 4924 class class class wbr 5074 dom cdm 5589 ran crn 5590 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Moorecmre 17291 mrClscmrc 17292 ACScacs 17294 Grpcgrp 18577 SubGrpcsubg 18749 DProd cdprd 19596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-gim 18875 df-cntz 18923 df-oppg 18950 df-cmn 19388 df-dprd 19598 |
This theorem is referenced by: dprdres 19631 dprdf1o 19635 subgdprd 19638 dprdsn 19639 dprd2dlem1 19644 dprd2da 19645 dprd2db 19646 dmdprdsplit2lem 19648 |
Copyright terms: Public domain | W3C validator |