Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdspan | Structured version Visualization version GIF version |
Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdspan.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
dprdspan | ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐺dom DProd 𝑆 → 𝐺dom DProd 𝑆) | |
2 | eqidd 2739 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆) | |
3 | dprdgrp 19523 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
4 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 4 | subgacs 18704 | . . . . 5 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺))) |
6 | acsmre 17278 | . . . . 5 ⊢ ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) | |
7 | 3, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
8 | dprdf 19524 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | |
9 | 8 | ffnd 6585 | . . . . . . 7 ⊢ (𝐺dom DProd 𝑆 → 𝑆 Fn dom 𝑆) |
10 | fniunfv 7102 | . . . . . . 7 ⊢ (𝑆 Fn dom 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆) |
12 | simpl 482 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → 𝐺dom DProd 𝑆) | |
13 | eqidd 2739 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → dom 𝑆 = dom 𝑆) | |
14 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → 𝑘 ∈ dom 𝑆) | |
15 | 12, 13, 14 | dprdub 19543 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
16 | 15 | ralrimiva 3107 | . . . . . . 7 ⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
17 | iunss 4971 | . . . . . . 7 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆) ↔ ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) | |
18 | 16, 17 | sylibr 233 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ (𝐺 DProd 𝑆)) |
19 | 11, 18 | eqsstrrd 3956 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (𝐺 DProd 𝑆)) |
20 | 4 | dprdssv 19534 | . . . . 5 ⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
21 | 19, 20 | sstrdi 3929 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (Base‘𝐺)) |
22 | dprdspan.k | . . . . 5 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
23 | 22 | mrccl 17237 | . . . 4 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran 𝑆 ⊆ (Base‘𝐺)) → (𝐾‘∪ ran 𝑆) ∈ (SubGrp‘𝐺)) |
24 | 7, 21, 23 | syl2anc 583 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐾‘∪ ran 𝑆) ∈ (SubGrp‘𝐺)) |
25 | eqimss 3973 | . . . . . . 7 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) = ∪ ran 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) | |
26 | 11, 25 | syl 17 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
27 | iunss 4971 | . . . . . 6 ⊢ (∪ 𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆 ↔ ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) | |
28 | 26, 27 | sylib 217 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆(𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
29 | 28 | r19.21bi 3132 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ ∪ ran 𝑆) |
30 | 7, 22, 21 | mrcssidd 17251 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → ∪ ran 𝑆 ⊆ (𝐾‘∪ ran 𝑆)) |
31 | 30 | adantr 480 | . . . 4 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → ∪ ran 𝑆 ⊆ (𝐾‘∪ ran 𝑆)) |
32 | 29, 31 | sstrd 3927 | . . 3 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ⊆ (𝐾‘∪ ran 𝑆)) |
33 | 1, 2, 24, 32 | dprdlub 19544 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (𝐾‘∪ ran 𝑆)) |
34 | dprdsubg 19542 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) | |
35 | 22 | mrcsscl 17246 | . . 3 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran 𝑆 ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (𝐾‘∪ ran 𝑆) ⊆ (𝐺 DProd 𝑆)) |
36 | 7, 19, 34, 35 | syl3anc 1369 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐾‘∪ ran 𝑆) ⊆ (𝐺 DProd 𝑆)) |
37 | 33, 36 | eqssd 3934 | 1 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∪ cuni 4836 ∪ ciun 4921 class class class wbr 5070 dom cdm 5580 ran crn 5581 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Moorecmre 17208 mrClscmrc 17209 ACScacs 17211 Grpcgrp 18492 SubGrpcsubg 18664 DProd cdprd 19511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-cntz 18838 df-oppg 18865 df-cmn 19303 df-dprd 19513 |
This theorem is referenced by: dprdres 19546 dprdf1o 19550 subgdprd 19553 dprdsn 19554 dprd2dlem1 19559 dprd2da 19560 dprd2db 19561 dmdprdsplit2lem 19563 |
Copyright terms: Public domain | W3C validator |