| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdf2 | Structured version Visualization version GIF version | ||
| Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdcntz.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdcntz.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| Ref | Expression |
|---|---|
| dprdf2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dprdf 19918 | . . 3 ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) |
| 4 | dprdcntz.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 5 | 4 | feq2d 6635 | . 2 ⊢ (𝜑 → (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺))) |
| 6 | 3, 5 | mpbid 232 | 1 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5091 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 SubGrpcsubg 19030 DProd cdprd 19905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-ixp 8822 df-dprd 19907 |
| This theorem is referenced by: dprdff 19924 dprdfid 19929 dprdfinv 19931 dprdfadd 19932 dprdfeq0 19934 dprdres 19940 dprdss 19941 dprdf1o 19944 dprdf1 19945 subgdprd 19947 dmdprdsplitlem 19949 dprdcntz2 19950 dpjlem 19963 dpjcntz 19964 dpjdisj 19965 dpjlsm 19966 dpjf 19969 dpjidcl 19970 dpjlid 19973 dpjghm 19975 dpjghm2 19976 ablfac1c 19983 ablfac1eulem 19984 ablfac1eu 19985 ablfaclem2 19998 ablfaclem3 19999 dchrptlem3 27202 |
| Copyright terms: Public domain | W3C validator |