Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdf2 | Structured version Visualization version GIF version |
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdcntz.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdcntz.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
Ref | Expression |
---|---|
dprdf2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdcntz.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dprdf 19189 | . . 3 ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) |
4 | dprdcntz.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
5 | 4 | feq2d 6485 | . 2 ⊢ (𝜑 → (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺))) |
6 | 3, 5 | mpbid 235 | 1 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5033 dom cdm 5525 ⟶wf 6332 ‘cfv 6336 SubGrpcsubg 18333 DProd cdprd 19176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-ixp 8481 df-dprd 19178 |
This theorem is referenced by: dprdff 19195 dprdfid 19200 dprdfinv 19202 dprdfadd 19203 dprdfeq0 19205 dprdres 19211 dprdss 19212 dprdf1o 19215 dprdf1 19216 subgdprd 19218 dmdprdsplitlem 19220 dprdcntz2 19221 dpjlem 19234 dpjcntz 19235 dpjdisj 19236 dpjlsm 19237 dpjf 19240 dpjidcl 19241 dpjlid 19244 dpjghm 19246 dpjghm2 19247 ablfac1c 19254 ablfac1eulem 19255 ablfac1eu 19256 ablfaclem2 19269 ablfaclem3 19270 dchrptlem3 25942 |
Copyright terms: Public domain | W3C validator |