MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf2 Structured version   Visualization version   GIF version

Theorem dprdf2 19871
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz.2 (𝜑 → dom 𝑆 = 𝐼)
Assertion
Ref Expression
dprdf2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))

Proof of Theorem dprdf2
StepHypRef Expression
1 dprdcntz.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dprdf 19870 . . 3 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
31, 2syl 17 . 2 (𝜑𝑆:dom 𝑆⟶(SubGrp‘𝐺))
4 dprdcntz.2 . . 3 (𝜑 → dom 𝑆 = 𝐼)
54feq2d 6700 . 2 (𝜑 → (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺)))
63, 5mpbid 231 1 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5147  dom cdm 5675  wf 6536  cfv 6540  SubGrpcsubg 18994   DProd cdprd 19857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-ixp 8888  df-dprd 19859
This theorem is referenced by:  dprdff  19876  dprdfid  19881  dprdfinv  19883  dprdfadd  19884  dprdfeq0  19886  dprdres  19892  dprdss  19893  dprdf1o  19896  dprdf1  19897  subgdprd  19899  dmdprdsplitlem  19901  dprdcntz2  19902  dpjlem  19915  dpjcntz  19916  dpjdisj  19917  dpjlsm  19918  dpjf  19921  dpjidcl  19922  dpjlid  19925  dpjghm  19927  dpjghm2  19928  ablfac1c  19935  ablfac1eulem  19936  ablfac1eu  19937  ablfaclem2  19950  ablfaclem3  19951  dchrptlem3  26758
  Copyright terms: Public domain W3C validator