MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf2 Structured version   Visualization version   GIF version

Theorem dprdf2 19990
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz.2 (𝜑 → dom 𝑆 = 𝐼)
Assertion
Ref Expression
dprdf2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))

Proof of Theorem dprdf2
StepHypRef Expression
1 dprdcntz.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dprdf 19989 . . 3 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
31, 2syl 17 . 2 (𝜑𝑆:dom 𝑆⟶(SubGrp‘𝐺))
4 dprdcntz.2 . . 3 (𝜑 → dom 𝑆 = 𝐼)
54feq2d 6692 . 2 (𝜑 → (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺)))
63, 5mpbid 232 1 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5119  dom cdm 5654  wf 6527  cfv 6531  SubGrpcsubg 19103   DProd cdprd 19976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-ixp 8912  df-dprd 19978
This theorem is referenced by:  dprdff  19995  dprdfid  20000  dprdfinv  20002  dprdfadd  20003  dprdfeq0  20005  dprdres  20011  dprdss  20012  dprdf1o  20015  dprdf1  20016  subgdprd  20018  dmdprdsplitlem  20020  dprdcntz2  20021  dpjlem  20034  dpjcntz  20035  dpjdisj  20036  dpjlsm  20037  dpjf  20040  dpjidcl  20041  dpjlid  20044  dpjghm  20046  dpjghm2  20047  ablfac1c  20054  ablfac1eulem  20055  ablfac1eu  20056  ablfaclem2  20069  ablfaclem3  20070  dchrptlem3  27229
  Copyright terms: Public domain W3C validator