MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf2 Structured version   Visualization version   GIF version

Theorem dprdf2 19939
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz.2 (𝜑 → dom 𝑆 = 𝐼)
Assertion
Ref Expression
dprdf2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))

Proof of Theorem dprdf2
StepHypRef Expression
1 dprdcntz.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dprdf 19938 . . 3 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
31, 2syl 17 . 2 (𝜑𝑆:dom 𝑆⟶(SubGrp‘𝐺))
4 dprdcntz.2 . . 3 (𝜑 → dom 𝑆 = 𝐼)
54feq2d 6672 . 2 (𝜑 → (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺)))
63, 5mpbid 232 1 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5107  dom cdm 5638  wf 6507  cfv 6511  SubGrpcsubg 19052   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-ixp 8871  df-dprd 19927
This theorem is referenced by:  dprdff  19944  dprdfid  19949  dprdfinv  19951  dprdfadd  19952  dprdfeq0  19954  dprdres  19960  dprdss  19961  dprdf1o  19964  dprdf1  19965  subgdprd  19967  dmdprdsplitlem  19969  dprdcntz2  19970  dpjlem  19983  dpjcntz  19984  dpjdisj  19985  dpjlsm  19986  dpjf  19989  dpjidcl  19990  dpjlid  19993  dpjghm  19995  dpjghm2  19996  ablfac1c  20003  ablfac1eulem  20004  ablfac1eu  20005  ablfaclem2  20018  ablfaclem3  20019  dchrptlem3  27177
  Copyright terms: Public domain W3C validator