| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdf2 | Structured version Visualization version GIF version | ||
| Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdcntz.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdcntz.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| Ref | Expression |
|---|---|
| dprdf2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dprdf 19938 | . . 3 ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) |
| 4 | dprdcntz.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 5 | 4 | feq2d 6672 | . 2 ⊢ (𝜑 → (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺))) |
| 6 | 3, 5 | mpbid 232 | 1 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5107 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 SubGrpcsubg 19052 DProd cdprd 19925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-ixp 8871 df-dprd 19927 |
| This theorem is referenced by: dprdff 19944 dprdfid 19949 dprdfinv 19951 dprdfadd 19952 dprdfeq0 19954 dprdres 19960 dprdss 19961 dprdf1o 19964 dprdf1 19965 subgdprd 19967 dmdprdsplitlem 19969 dprdcntz2 19970 dpjlem 19983 dpjcntz 19984 dpjdisj 19985 dpjlsm 19986 dpjf 19989 dpjidcl 19990 dpjlid 19993 dpjghm 19995 dpjghm2 19996 ablfac1c 20003 ablfac1eulem 20004 ablfac1eu 20005 ablfaclem2 20018 ablfaclem3 20019 dchrptlem3 27177 |
| Copyright terms: Public domain | W3C validator |