![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdf2 | Structured version Visualization version GIF version |
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdcntz.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdcntz.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
Ref | Expression |
---|---|
dprdf2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdcntz.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dprdf 20050 | . . 3 ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) |
4 | dprdcntz.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
5 | 4 | feq2d 6733 | . 2 ⊢ (𝜑 → (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺))) |
6 | 3, 5 | mpbid 232 | 1 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 class class class wbr 5166 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 SubGrpcsubg 19160 DProd cdprd 20037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-ixp 8956 df-dprd 20039 |
This theorem is referenced by: dprdff 20056 dprdfid 20061 dprdfinv 20063 dprdfadd 20064 dprdfeq0 20066 dprdres 20072 dprdss 20073 dprdf1o 20076 dprdf1 20077 subgdprd 20079 dmdprdsplitlem 20081 dprdcntz2 20082 dpjlem 20095 dpjcntz 20096 dpjdisj 20097 dpjlsm 20098 dpjf 20101 dpjidcl 20102 dpjlid 20105 dpjghm 20107 dpjghm2 20108 ablfac1c 20115 ablfac1eulem 20116 ablfac1eu 20117 ablfaclem2 20130 ablfaclem3 20131 dchrptlem3 27328 |
Copyright terms: Public domain | W3C validator |