![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliccxr | Structured version Visualization version GIF version |
Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccxr | ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 12504 | . 2 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
2 | 1 | sseli 3795 | 1 ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 (class class class)co 6879 ℝ*cxr 10363 [,]cicc 12426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-1st 7402 df-2nd 7403 df-xr 10368 df-icc 12430 |
This theorem is referenced by: xrge0neqmnf 12525 xrge0nre 12527 xrge0infss 30042 xrge0mulgnn0 30204 xrge0omnd 30226 esumcvgre 30668 mblfinlem1 33934 iccintsng 40489 icoiccdif 40490 eliccnelico 40495 eliccelicod 40496 ge0xrre 40497 iblspltprt 40927 iblcncfioo 40932 itgspltprt 40933 gsumge0cl 41326 sge0tsms 41335 |
Copyright terms: Public domain | W3C validator |