| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliccxr | Structured version Visualization version GIF version | ||
| Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliccxr | ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13398 | . 2 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
| 2 | 1 | sseli 3945 | 1 ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7390 ℝ*cxr 11214 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-xr 11219 df-icc 13320 |
| This theorem is referenced by: xrge0neqmnf 13420 xrge0nre 13421 isxmet2d 24222 stdbdxmet 24410 metds0 24746 metdstri 24747 metdsre 24749 metdseq0 24750 metdscnlem 24751 metnrmlem1a 24754 metnrmlem1 24755 oprpiece1res1 24856 xrge0infss 32690 xrge0mulgnn0 32963 xrge0omnd 33032 esumcvgre 34088 mblfinlem1 37658 iccintsng 45528 icoiccdif 45529 eliccnelico 45534 eliccelicod 45535 ge0xrre 45536 iblspltprt 45978 iblcncfioo 45983 itgspltprt 45984 gsumge0cl 46376 sge0tsms 46385 |
| Copyright terms: Public domain | W3C validator |