MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliccxr Structured version   Visualization version   GIF version

Theorem eliccxr 13471
Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
eliccxr (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*)

Proof of Theorem eliccxr
StepHypRef Expression
1 iccssxr 13466 . 2 (𝐵[,]𝐶) ⊆ ℝ*
21sseli 3990 1 (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  (class class class)co 7430  *cxr 11291  [,]cicc 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-xr 11296  df-icc 13390
This theorem is referenced by:  xrge0neqmnf  13488  xrge0nre  13489  isxmet2d  24352  stdbdxmet  24543  metds0  24885  metdstri  24886  metdsre  24888  metdseq0  24889  metdscnlem  24890  metnrmlem1a  24893  metnrmlem1  24894  oprpiece1res1  24995  xrge0infss  32770  xrge0mulgnn0  33002  xrge0omnd  33070  esumcvgre  34071  mblfinlem1  37643  iccintsng  45475  icoiccdif  45476  eliccnelico  45481  eliccelicod  45482  ge0xrre  45483  iblspltprt  45928  iblcncfioo  45933  itgspltprt  45934  gsumge0cl  46326  sge0tsms  46335
  Copyright terms: Public domain W3C validator