| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliccxr | Structured version Visualization version GIF version | ||
| Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliccxr | ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13351 | . 2 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
| 2 | 1 | sseli 3933 | 1 ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7353 ℝ*cxr 11167 [,]cicc 13269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-xr 11172 df-icc 13273 |
| This theorem is referenced by: xrge0neqmnf 13373 xrge0nre 13374 xrge0omnd 21370 isxmet2d 24231 stdbdxmet 24419 metds0 24755 metdstri 24756 metdsre 24758 metdseq0 24759 metdscnlem 24760 metnrmlem1a 24763 metnrmlem1 24764 oprpiece1res1 24865 xrge0infss 32716 xrge0mulgnn0 32982 esumcvgre 34057 mblfinlem1 37636 iccintsng 45505 icoiccdif 45506 eliccnelico 45511 eliccelicod 45512 ge0xrre 45513 iblspltprt 45955 iblcncfioo 45960 itgspltprt 45961 gsumge0cl 46353 sge0tsms 46362 |
| Copyright terms: Public domain | W3C validator |