| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliccxr | Structured version Visualization version GIF version | ||
| Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliccxr | ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13330 | . 2 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
| 2 | 1 | sseli 3930 | 1 ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7346 ℝ*cxr 11145 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-xr 11150 df-icc 13252 |
| This theorem is referenced by: xrge0neqmnf 13352 xrge0nre 13353 xrge0omnd 21383 isxmet2d 24243 stdbdxmet 24431 metds0 24767 metdstri 24768 metdsre 24770 metdseq0 24771 metdscnlem 24772 metnrmlem1a 24775 metnrmlem1 24776 oprpiece1res1 24877 xrge0infss 32741 xrge0mulgnn0 32994 esumcvgre 34102 mblfinlem1 37703 iccintsng 45569 icoiccdif 45570 eliccnelico 45575 eliccelicod 45576 ge0xrre 45577 iblspltprt 46017 iblcncfioo 46022 itgspltprt 46023 gsumge0cl 46415 sge0tsms 46424 |
| Copyright terms: Public domain | W3C validator |