MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliccxr Structured version   Visualization version   GIF version

Theorem eliccxr 13411
Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
eliccxr (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*)

Proof of Theorem eliccxr
StepHypRef Expression
1 iccssxr 13406 . 2 (𝐵[,]𝐶) ⊆ ℝ*
21sseli 3978 1 (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  (class class class)co 7408  *cxr 11246  [,]cicc 13326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-xr 11251  df-icc 13330
This theorem is referenced by:  xrge0neqmnf  13428  xrge0nre  13429  isxmet2d  23832  stdbdxmet  24023  metds0  24365  metdstri  24366  metdsre  24368  metdseq0  24369  metdscnlem  24370  metnrmlem1a  24373  metnrmlem1  24374  oprpiece1res1  24466  xrge0infss  31968  xrge0mulgnn0  32185  xrge0omnd  32224  esumcvgre  33084  mblfinlem1  36520  iccintsng  44226  icoiccdif  44227  eliccnelico  44232  eliccelicod  44233  ge0xrre  44234  iblspltprt  44679  iblcncfioo  44684  itgspltprt  44685  gsumge0cl  45077  sge0tsms  45086
  Copyright terms: Public domain W3C validator