![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliccxr | Structured version Visualization version GIF version |
Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccxr | ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13466 | . 2 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
2 | 1 | sseli 3990 | 1 ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 (class class class)co 7430 ℝ*cxr 11291 [,]cicc 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-xr 11296 df-icc 13390 |
This theorem is referenced by: xrge0neqmnf 13488 xrge0nre 13489 isxmet2d 24352 stdbdxmet 24543 metds0 24885 metdstri 24886 metdsre 24888 metdseq0 24889 metdscnlem 24890 metnrmlem1a 24893 metnrmlem1 24894 oprpiece1res1 24995 xrge0infss 32770 xrge0mulgnn0 33002 xrge0omnd 33070 esumcvgre 34071 mblfinlem1 37643 iccintsng 45475 icoiccdif 45476 eliccnelico 45481 eliccelicod 45482 ge0xrre 45483 iblspltprt 45928 iblcncfioo 45933 itgspltprt 45934 gsumge0cl 46326 sge0tsms 46335 |
Copyright terms: Public domain | W3C validator |