MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliccxr Structured version   Visualization version   GIF version

Theorem eliccxr 13415
Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
eliccxr (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*)

Proof of Theorem eliccxr
StepHypRef Expression
1 iccssxr 13410 . 2 (𝐵[,]𝐶) ⊆ ℝ*
21sseli 3973 1 (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  (class class class)co 7404  *cxr 11248  [,]cicc 13330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-xr 11253  df-icc 13334
This theorem is referenced by:  xrge0neqmnf  13432  xrge0nre  13433  isxmet2d  24183  stdbdxmet  24374  metds0  24716  metdstri  24717  metdsre  24719  metdseq0  24720  metdscnlem  24721  metnrmlem1a  24724  metnrmlem1  24725  oprpiece1res1  24826  xrge0infss  32477  xrge0mulgnn0  32690  xrge0omnd  32732  esumcvgre  33618  mblfinlem1  37037  iccintsng  44790  icoiccdif  44791  eliccnelico  44796  eliccelicod  44797  ge0xrre  44798  iblspltprt  45243  iblcncfioo  45248  itgspltprt  45249  gsumge0cl  45641  sge0tsms  45650
  Copyright terms: Public domain W3C validator