| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliccxr | Structured version Visualization version GIF version | ||
| Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliccxr | ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13447 | . 2 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
| 2 | 1 | sseli 3954 | 1 ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7405 ℝ*cxr 11268 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-xr 11273 df-icc 13369 |
| This theorem is referenced by: xrge0neqmnf 13469 xrge0nre 13470 isxmet2d 24266 stdbdxmet 24454 metds0 24790 metdstri 24791 metdsre 24793 metdseq0 24794 metdscnlem 24795 metnrmlem1a 24798 metnrmlem1 24799 oprpiece1res1 24900 xrge0infss 32737 xrge0mulgnn0 33010 xrge0omnd 33079 esumcvgre 34122 mblfinlem1 37681 iccintsng 45552 icoiccdif 45553 eliccnelico 45558 eliccelicod 45559 ge0xrre 45560 iblspltprt 46002 iblcncfioo 46007 itgspltprt 46008 gsumge0cl 46400 sge0tsms 46409 |
| Copyright terms: Public domain | W3C validator |