![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliccxr | Structured version Visualization version GIF version |
Description: A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccxr | ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13490 | . 2 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
2 | 1 | sseli 4004 | 1 ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7448 ℝ*cxr 11323 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-xr 11328 df-icc 13414 |
This theorem is referenced by: xrge0neqmnf 13512 xrge0nre 13513 isxmet2d 24358 stdbdxmet 24549 metds0 24891 metdstri 24892 metdsre 24894 metdseq0 24895 metdscnlem 24896 metnrmlem1a 24899 metnrmlem1 24900 oprpiece1res1 25001 xrge0infss 32767 xrge0mulgnn0 33001 xrge0omnd 33061 esumcvgre 34055 mblfinlem1 37617 iccintsng 45441 icoiccdif 45442 eliccnelico 45447 eliccelicod 45448 ge0xrre 45449 iblspltprt 45894 iblcncfioo 45899 itgspltprt 45900 gsumge0cl 46292 sge0tsms 46301 |
Copyright terms: Public domain | W3C validator |