![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccnelico | Structured version Visualization version GIF version |
Description: An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
eliccnelico.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
eliccnelico.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
eliccnelico.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
eliccnelico.nel | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵)) |
Ref | Expression |
---|---|
eliccnelico | ⊢ (𝜑 → 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccnelico.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
2 | eliccxr 13472 | . . 3 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
4 | eliccnelico.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | eliccnelico.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
6 | iccleub 13439 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) | |
7 | 5, 4, 1, 6 | syl3anc 1370 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
8 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐴 ∈ ℝ*) |
9 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐵 ∈ ℝ*) |
10 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 ∈ ℝ*) |
11 | iccgelb 13440 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | |
12 | 5, 4, 1, 11 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → ¬ 𝐵 ≤ 𝐶) | |
15 | xrltnle 11326 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) | |
16 | 3, 4, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
18 | 14, 17 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 < 𝐵) |
19 | 8, 9, 10, 13, 18 | elicod 13434 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 ∈ (𝐴[,)𝐵)) |
20 | eliccnelico.nel | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵)) | |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → ¬ 𝐶 ∈ (𝐴[,)𝐵)) |
22 | 19, 21 | condan 818 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
23 | 3, 4, 7, 22 | xrletrid 13194 | 1 ⊢ (𝜑 → 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 [,)cico 13386 [,]cicc 13387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-ico 13390 df-icc 13391 |
This theorem is referenced by: sge0f1o 46338 |
Copyright terms: Public domain | W3C validator |