Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccnelico Structured version   Visualization version   GIF version

Theorem eliccnelico 45520
Description: An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
eliccnelico.1 (𝜑𝐴 ∈ ℝ*)
eliccnelico.b (𝜑𝐵 ∈ ℝ*)
eliccnelico.c (𝜑𝐶 ∈ (𝐴[,]𝐵))
eliccnelico.nel (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵))
Assertion
Ref Expression
eliccnelico (𝜑𝐶 = 𝐵)

Proof of Theorem eliccnelico
StepHypRef Expression
1 eliccnelico.c . . 3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
2 eliccxr 13372 . . 3 (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*)
31, 2syl 17 . 2 (𝜑𝐶 ∈ ℝ*)
4 eliccnelico.b . 2 (𝜑𝐵 ∈ ℝ*)
5 eliccnelico.1 . . 3 (𝜑𝐴 ∈ ℝ*)
6 iccleub 13338 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
75, 4, 1, 6syl3anc 1373 . 2 (𝜑𝐶𝐵)
85adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐴 ∈ ℝ*)
94adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐵 ∈ ℝ*)
103adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐶 ∈ ℝ*)
11 iccgelb 13339 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
125, 4, 1, 11syl3anc 1373 . . . . 5 (𝜑𝐴𝐶)
1312adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐴𝐶)
14 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐶) → ¬ 𝐵𝐶)
15 xrltnle 11217 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
163, 4, 15syl2anc 584 . . . . . 6 (𝜑 → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
1716adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐶) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
1814, 17mpbird 257 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐶 < 𝐵)
198, 9, 10, 13, 18elicod 13332 . . 3 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐶 ∈ (𝐴[,)𝐵))
20 eliccnelico.nel . . . 4 (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵))
2120adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐵𝐶) → ¬ 𝐶 ∈ (𝐴[,)𝐵))
2219, 21condan 817 . 2 (𝜑𝐵𝐶)
233, 4, 7, 22xrletrid 13091 1 (𝜑𝐶 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  *cxr 11183   < clt 11184  cle 11185  [,)cico 13284  [,]cicc 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-ico 13288  df-icc 13289
This theorem is referenced by:  sge0f1o  46373
  Copyright terms: Public domain W3C validator