Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccnelico Structured version   Visualization version   GIF version

Theorem eliccnelico 45482
Description: An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
eliccnelico.1 (𝜑𝐴 ∈ ℝ*)
eliccnelico.b (𝜑𝐵 ∈ ℝ*)
eliccnelico.c (𝜑𝐶 ∈ (𝐴[,]𝐵))
eliccnelico.nel (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵))
Assertion
Ref Expression
eliccnelico (𝜑𝐶 = 𝐵)

Proof of Theorem eliccnelico
StepHypRef Expression
1 eliccnelico.c . . 3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
2 eliccxr 13472 . . 3 (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*)
31, 2syl 17 . 2 (𝜑𝐶 ∈ ℝ*)
4 eliccnelico.b . 2 (𝜑𝐵 ∈ ℝ*)
5 eliccnelico.1 . . 3 (𝜑𝐴 ∈ ℝ*)
6 iccleub 13439 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
75, 4, 1, 6syl3anc 1370 . 2 (𝜑𝐶𝐵)
85adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐴 ∈ ℝ*)
94adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐵 ∈ ℝ*)
103adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐶 ∈ ℝ*)
11 iccgelb 13440 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
125, 4, 1, 11syl3anc 1370 . . . . 5 (𝜑𝐴𝐶)
1312adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐴𝐶)
14 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐶) → ¬ 𝐵𝐶)
15 xrltnle 11326 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
163, 4, 15syl2anc 584 . . . . . 6 (𝜑 → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
1716adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐶) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
1814, 17mpbird 257 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐶 < 𝐵)
198, 9, 10, 13, 18elicod 13434 . . 3 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐶 ∈ (𝐴[,)𝐵))
20 eliccnelico.nel . . . 4 (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵))
2120adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐵𝐶) → ¬ 𝐶 ∈ (𝐴[,)𝐵))
2219, 21condan 818 . 2 (𝜑𝐵𝐶)
233, 4, 7, 22xrletrid 13194 1 (𝜑𝐶 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  *cxr 11292   < clt 11293  cle 11294  [,)cico 13386  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ico 13390  df-icc 13391
This theorem is referenced by:  sge0f1o  46338
  Copyright terms: Public domain W3C validator