![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccnelico | Structured version Visualization version GIF version |
Description: An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
eliccnelico.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
eliccnelico.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
eliccnelico.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
eliccnelico.nel | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵)) |
Ref | Expression |
---|---|
eliccnelico | ⊢ (𝜑 → 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccnelico.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
2 | eliccxr 13408 | . . 3 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
4 | eliccnelico.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | eliccnelico.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
6 | iccleub 13375 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) | |
7 | 5, 4, 1, 6 | syl3anc 1371 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
8 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐴 ∈ ℝ*) |
9 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐵 ∈ ℝ*) |
10 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 ∈ ℝ*) |
11 | iccgelb 13376 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | |
12 | 5, 4, 1, 11 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
14 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → ¬ 𝐵 ≤ 𝐶) | |
15 | xrltnle 11277 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) | |
16 | 3, 4, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
17 | 16 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
18 | 14, 17 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 < 𝐵) |
19 | 8, 9, 10, 13, 18 | elicod 13370 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 ∈ (𝐴[,)𝐵)) |
20 | eliccnelico.nel | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵)) | |
21 | 20 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → ¬ 𝐶 ∈ (𝐴[,)𝐵)) |
22 | 19, 21 | condan 816 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
23 | 3, 4, 7, 22 | xrletrid 13130 | 1 ⊢ (𝜑 → 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 (class class class)co 7405 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 [,)cico 13322 [,]cicc 13323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-ico 13326 df-icc 13327 |
This theorem is referenced by: sge0f1o 45084 |
Copyright terms: Public domain | W3C validator |