![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccnelico | Structured version Visualization version GIF version |
Description: An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
eliccnelico.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
eliccnelico.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
eliccnelico.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
eliccnelico.nel | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵)) |
Ref | Expression |
---|---|
eliccnelico | ⊢ (𝜑 → 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccnelico.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
2 | eliccxr 13442 | . . 3 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
4 | eliccnelico.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | eliccnelico.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
6 | iccleub 13409 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) | |
7 | 5, 4, 1, 6 | syl3anc 1368 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
8 | 5 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐴 ∈ ℝ*) |
9 | 4 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐵 ∈ ℝ*) |
10 | 3 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 ∈ ℝ*) |
11 | iccgelb 13410 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | |
12 | 5, 4, 1, 11 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
13 | 12 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
14 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → ¬ 𝐵 ≤ 𝐶) | |
15 | xrltnle 11309 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) | |
16 | 3, 4, 15 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
17 | 16 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
18 | 14, 17 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 < 𝐵) |
19 | 8, 9, 10, 13, 18 | elicod 13404 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 ∈ (𝐴[,)𝐵)) |
20 | eliccnelico.nel | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵)) | |
21 | 20 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → ¬ 𝐶 ∈ (𝐴[,)𝐵)) |
22 | 19, 21 | condan 816 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
23 | 3, 4, 7, 22 | xrletrid 13164 | 1 ⊢ (𝜑 → 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5143 (class class class)co 7415 ℝ*cxr 11275 < clt 11276 ≤ cle 11277 [,)cico 13356 [,]cicc 13357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-pre-lttri 11210 ax-pre-lttrn 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-ico 13360 df-icc 13361 |
This theorem is referenced by: sge0f1o 45832 |
Copyright terms: Public domain | W3C validator |