Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccnelico | Structured version Visualization version GIF version |
Description: An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
eliccnelico.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
eliccnelico.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
eliccnelico.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
eliccnelico.nel | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵)) |
Ref | Expression |
---|---|
eliccnelico | ⊢ (𝜑 → 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccnelico.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
2 | eliccxr 13167 | . . 3 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
4 | eliccnelico.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | eliccnelico.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
6 | iccleub 13134 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) | |
7 | 5, 4, 1, 6 | syl3anc 1370 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
8 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐴 ∈ ℝ*) |
9 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐵 ∈ ℝ*) |
10 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 ∈ ℝ*) |
11 | iccgelb 13135 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | |
12 | 5, 4, 1, 11 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
14 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → ¬ 𝐵 ≤ 𝐶) | |
15 | xrltnle 11042 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) | |
16 | 3, 4, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
17 | 16 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
18 | 14, 17 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 < 𝐵) |
19 | 8, 9, 10, 13, 18 | elicod 13129 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → 𝐶 ∈ (𝐴[,)𝐵)) |
20 | eliccnelico.nel | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵)) | |
21 | 20 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐶) → ¬ 𝐶 ∈ (𝐴[,)𝐵)) |
22 | 19, 21 | condan 815 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
23 | 3, 4, 7, 22 | xrletrid 12889 | 1 ⊢ (𝜑 → 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,)cico 13081 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ico 13085 df-icc 13086 |
This theorem is referenced by: sge0f1o 43920 |
Copyright terms: Public domain | W3C validator |