| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccleub | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
| Ref | Expression |
|---|---|
| iccleub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13292 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐶 ≤ 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ≤ 𝐵)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝ*cxr 11148 ≤ cle 11150 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-xr 11153 df-icc 13255 |
| This theorem is referenced by: supicc 13404 supiccub 13405 supicclub 13406 oprpiece1res1 24847 ivthlem1 25350 isosctrlem1 26726 ttgcontlem1 28830 broucube 37634 mblfinlem1 37637 ftc1cnnclem 37671 ftc2nc 37682 areaquad 43189 isosctrlem1ALT 44907 lefldiveq 45274 eliccelioc 45502 iccintsng 45504 eliccnelico 45510 eliccelicod 45511 inficc 45515 iccdificc 45520 iccleubd 45529 cncfiooiccre 45876 itgioocnicc 45958 itgspltprt 45960 itgiccshift 45961 fourierdlem1 46089 fourierdlem20 46108 fourierdlem24 46112 fourierdlem25 46113 fourierdlem27 46115 fourierdlem43 46131 fourierdlem44 46132 fourierdlem50 46137 fourierdlem51 46138 fourierdlem52 46139 fourierdlem64 46151 fourierdlem73 46160 fourierdlem76 46163 fourierdlem79 46166 fourierdlem81 46168 fourierdlem92 46179 fourierdlem102 46189 fourierdlem103 46190 fourierdlem104 46191 fourierdlem114 46201 rrxsnicc 46281 salgencntex 46324 sge0p1 46395 hoidmv1lelem3 46574 hoidmvlelem1 46576 hoidmvlelem4 46579 |
| Copyright terms: Public domain | W3C validator |