MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccleub Structured version   Visualization version   GIF version

Theorem iccleub 13369
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
iccleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)

Proof of Theorem iccleub
StepHypRef Expression
1 elicc1 13357 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp3 1138 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶𝐵)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶𝐵))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5110  (class class class)co 7390  *cxr 11214  cle 11216  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-xr 11219  df-icc 13320
This theorem is referenced by:  supicc  13469  supiccub  13470  supicclub  13471  oprpiece1res1  24856  ivthlem1  25359  isosctrlem1  26735  ttgcontlem1  28819  broucube  37655  mblfinlem1  37658  ftc1cnnclem  37692  ftc2nc  37703  areaquad  43212  isosctrlem1ALT  44930  lefldiveq  45297  eliccelioc  45526  iccintsng  45528  eliccnelico  45534  eliccelicod  45535  inficc  45539  iccdificc  45544  iccleubd  45553  cncfiooiccre  45900  itgioocnicc  45982  itgspltprt  45984  itgiccshift  45985  fourierdlem1  46113  fourierdlem20  46132  fourierdlem24  46136  fourierdlem25  46137  fourierdlem27  46139  fourierdlem43  46155  fourierdlem44  46156  fourierdlem50  46161  fourierdlem51  46162  fourierdlem52  46163  fourierdlem64  46175  fourierdlem73  46184  fourierdlem76  46187  fourierdlem79  46190  fourierdlem81  46192  fourierdlem92  46203  fourierdlem102  46213  fourierdlem103  46214  fourierdlem104  46215  fourierdlem114  46225  rrxsnicc  46305  salgencntex  46348  sge0p1  46419  hoidmv1lelem3  46598  hoidmvlelem1  46600  hoidmvlelem4  46603
  Copyright terms: Public domain W3C validator