MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccleub Structured version   Visualization version   GIF version

Theorem iccleub 13338
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
iccleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)

Proof of Theorem iccleub
StepHypRef Expression
1 elicc1 13326 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp3 1138 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶𝐵)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶𝐵))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5102  (class class class)co 7369  *cxr 11183  cle 11185  [,]cicc 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-xr 11188  df-icc 13289
This theorem is referenced by:  supicc  13438  supiccub  13439  supicclub  13440  oprpiece1res1  24825  ivthlem1  25328  isosctrlem1  26704  ttgcontlem1  28788  broucube  37621  mblfinlem1  37624  ftc1cnnclem  37658  ftc2nc  37669  areaquad  43178  isosctrlem1ALT  44896  lefldiveq  45263  eliccelioc  45492  iccintsng  45494  eliccnelico  45500  eliccelicod  45501  inficc  45505  iccdificc  45510  iccleubd  45519  cncfiooiccre  45866  itgioocnicc  45948  itgspltprt  45950  itgiccshift  45951  fourierdlem1  46079  fourierdlem20  46098  fourierdlem24  46102  fourierdlem25  46103  fourierdlem27  46105  fourierdlem43  46121  fourierdlem44  46122  fourierdlem50  46127  fourierdlem51  46128  fourierdlem52  46129  fourierdlem64  46141  fourierdlem73  46150  fourierdlem76  46153  fourierdlem79  46156  fourierdlem81  46158  fourierdlem92  46169  fourierdlem102  46179  fourierdlem103  46180  fourierdlem104  46181  fourierdlem114  46191  rrxsnicc  46271  salgencntex  46314  sge0p1  46385  hoidmv1lelem3  46564  hoidmvlelem1  46566  hoidmvlelem4  46569
  Copyright terms: Public domain W3C validator