![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccleub | Structured version Visualization version GIF version |
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
Ref | Expression |
---|---|
iccleub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 13368 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
2 | simp3 1139 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐶 ≤ 𝐵) | |
3 | 1, 2 | syl6bi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ≤ 𝐵)) |
4 | 3 | 3impia 1118 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 ℝ*cxr 11247 ≤ cle 11249 [,]cicc 13327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-xr 11252 df-icc 13331 |
This theorem is referenced by: supicc 13478 supiccub 13479 supicclub 13480 oprpiece1res1 24467 ivthlem1 24968 isosctrlem1 26323 ttgcontlem1 28173 broucube 36570 mblfinlem1 36573 ftc1cnnclem 36607 ftc2nc 36618 areaquad 42013 isosctrlem1ALT 43743 lefldiveq 44050 eliccelioc 44282 iccintsng 44284 eliccnelico 44290 eliccelicod 44291 inficc 44295 iccdificc 44300 iccleubd 44309 cncfiooiccre 44659 itgioocnicc 44741 itgspltprt 44743 itgiccshift 44744 fourierdlem1 44872 fourierdlem20 44891 fourierdlem24 44895 fourierdlem25 44896 fourierdlem27 44898 fourierdlem43 44914 fourierdlem44 44915 fourierdlem50 44920 fourierdlem51 44921 fourierdlem52 44922 fourierdlem64 44934 fourierdlem73 44943 fourierdlem76 44946 fourierdlem79 44949 fourierdlem81 44951 fourierdlem92 44962 fourierdlem102 44972 fourierdlem103 44973 fourierdlem104 44974 fourierdlem114 44984 rrxsnicc 45064 salgencntex 45107 sge0p1 45178 hoidmv1lelem3 45357 hoidmvlelem1 45359 hoidmvlelem4 45362 |
Copyright terms: Public domain | W3C validator |