| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccleub | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
| Ref | Expression |
|---|---|
| iccleub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13289 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐶 ≤ 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ≤ 𝐵)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝ*cxr 11145 ≤ cle 11147 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-xr 11150 df-icc 13252 |
| This theorem is referenced by: supicc 13401 supiccub 13402 supicclub 13403 oprpiece1res1 24876 ivthlem1 25379 isosctrlem1 26755 ttgcontlem1 28863 broucube 37702 mblfinlem1 37705 ftc1cnnclem 37739 ftc2nc 37750 areaquad 43257 isosctrlem1ALT 44974 lefldiveq 45341 eliccelioc 45569 iccintsng 45571 eliccnelico 45577 eliccelicod 45578 inficc 45582 iccdificc 45587 iccleubd 45596 cncfiooiccre 45941 itgioocnicc 46023 itgspltprt 46025 itgiccshift 46026 fourierdlem1 46154 fourierdlem20 46173 fourierdlem24 46177 fourierdlem25 46178 fourierdlem27 46180 fourierdlem43 46196 fourierdlem44 46197 fourierdlem50 46202 fourierdlem51 46203 fourierdlem52 46204 fourierdlem64 46216 fourierdlem73 46225 fourierdlem76 46228 fourierdlem79 46231 fourierdlem81 46233 fourierdlem92 46244 fourierdlem102 46254 fourierdlem103 46255 fourierdlem104 46256 fourierdlem114 46266 rrxsnicc 46346 salgencntex 46389 sge0p1 46460 hoidmv1lelem3 46639 hoidmvlelem1 46641 hoidmvlelem4 46644 |
| Copyright terms: Public domain | W3C validator |