MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccleub Structured version   Visualization version   GIF version

Theorem iccleub 13418
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
iccleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)

Proof of Theorem iccleub
StepHypRef Expression
1 elicc1 13406 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp3 1138 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶𝐵)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶𝐵))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2108   class class class wbr 5119  (class class class)co 7405  *cxr 11268  cle 11270  [,]cicc 13365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-xr 11273  df-icc 13369
This theorem is referenced by:  supicc  13518  supiccub  13519  supicclub  13520  oprpiece1res1  24900  ivthlem1  25404  isosctrlem1  26780  ttgcontlem1  28864  broucube  37678  mblfinlem1  37681  ftc1cnnclem  37715  ftc2nc  37726  areaquad  43240  isosctrlem1ALT  44958  lefldiveq  45321  eliccelioc  45550  iccintsng  45552  eliccnelico  45558  eliccelicod  45559  inficc  45563  iccdificc  45568  iccleubd  45577  cncfiooiccre  45924  itgioocnicc  46006  itgspltprt  46008  itgiccshift  46009  fourierdlem1  46137  fourierdlem20  46156  fourierdlem24  46160  fourierdlem25  46161  fourierdlem27  46163  fourierdlem43  46179  fourierdlem44  46180  fourierdlem50  46185  fourierdlem51  46186  fourierdlem52  46187  fourierdlem64  46199  fourierdlem73  46208  fourierdlem76  46211  fourierdlem79  46214  fourierdlem81  46216  fourierdlem92  46227  fourierdlem102  46237  fourierdlem103  46238  fourierdlem104  46239  fourierdlem114  46249  rrxsnicc  46329  salgencntex  46372  sge0p1  46443  hoidmv1lelem3  46622  hoidmvlelem1  46624  hoidmvlelem4  46627
  Copyright terms: Public domain W3C validator