MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccleub Structured version   Visualization version   GIF version

Theorem iccleub 13462
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
iccleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)

Proof of Theorem iccleub
StepHypRef Expression
1 elicc1 13451 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp3 1138 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶𝐵)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶𝐵))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  (class class class)co 7448  *cxr 11323  cle 11325  [,]cicc 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-xr 11328  df-icc 13414
This theorem is referenced by:  supicc  13561  supiccub  13562  supicclub  13563  oprpiece1res1  25001  ivthlem1  25505  isosctrlem1  26879  ttgcontlem1  28917  broucube  37614  mblfinlem1  37617  ftc1cnnclem  37651  ftc2nc  37662  areaquad  43177  isosctrlem1ALT  44905  lefldiveq  45207  eliccelioc  45439  iccintsng  45441  eliccnelico  45447  eliccelicod  45448  inficc  45452  iccdificc  45457  iccleubd  45466  cncfiooiccre  45816  itgioocnicc  45898  itgspltprt  45900  itgiccshift  45901  fourierdlem1  46029  fourierdlem20  46048  fourierdlem24  46052  fourierdlem25  46053  fourierdlem27  46055  fourierdlem43  46071  fourierdlem44  46072  fourierdlem50  46077  fourierdlem51  46078  fourierdlem52  46079  fourierdlem64  46091  fourierdlem73  46100  fourierdlem76  46103  fourierdlem79  46106  fourierdlem81  46108  fourierdlem92  46119  fourierdlem102  46129  fourierdlem103  46130  fourierdlem104  46131  fourierdlem114  46141  rrxsnicc  46221  salgencntex  46264  sge0p1  46335  hoidmv1lelem3  46514  hoidmvlelem1  46516  hoidmvlelem4  46519
  Copyright terms: Public domain W3C validator