MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccleub Structured version   Visualization version   GIF version

Theorem iccleub 13304
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
iccleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)

Proof of Theorem iccleub
StepHypRef Expression
1 elicc1 13292 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp3 1138 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶𝐵)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶𝐵))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5092  (class class class)co 7349  *cxr 11148  cle 11150  [,]cicc 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-xr 11153  df-icc 13255
This theorem is referenced by:  supicc  13404  supiccub  13405  supicclub  13406  oprpiece1res1  24847  ivthlem1  25350  isosctrlem1  26726  ttgcontlem1  28830  broucube  37634  mblfinlem1  37637  ftc1cnnclem  37671  ftc2nc  37682  areaquad  43189  isosctrlem1ALT  44907  lefldiveq  45274  eliccelioc  45502  iccintsng  45504  eliccnelico  45510  eliccelicod  45511  inficc  45515  iccdificc  45520  iccleubd  45529  cncfiooiccre  45876  itgioocnicc  45958  itgspltprt  45960  itgiccshift  45961  fourierdlem1  46089  fourierdlem20  46108  fourierdlem24  46112  fourierdlem25  46113  fourierdlem27  46115  fourierdlem43  46131  fourierdlem44  46132  fourierdlem50  46137  fourierdlem51  46138  fourierdlem52  46139  fourierdlem64  46151  fourierdlem73  46160  fourierdlem76  46163  fourierdlem79  46166  fourierdlem81  46168  fourierdlem92  46179  fourierdlem102  46189  fourierdlem103  46190  fourierdlem104  46191  fourierdlem114  46201  rrxsnicc  46281  salgencntex  46324  sge0p1  46395  hoidmv1lelem3  46574  hoidmvlelem1  46576  hoidmvlelem4  46579
  Copyright terms: Public domain W3C validator