| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccleub | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
| Ref | Expression |
|---|---|
| iccleub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13406 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐶 ≤ 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ≤ 𝐵)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝ*cxr 11268 ≤ cle 11270 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-xr 11273 df-icc 13369 |
| This theorem is referenced by: supicc 13518 supiccub 13519 supicclub 13520 oprpiece1res1 24900 ivthlem1 25404 isosctrlem1 26780 ttgcontlem1 28864 broucube 37678 mblfinlem1 37681 ftc1cnnclem 37715 ftc2nc 37726 areaquad 43240 isosctrlem1ALT 44958 lefldiveq 45321 eliccelioc 45550 iccintsng 45552 eliccnelico 45558 eliccelicod 45559 inficc 45563 iccdificc 45568 iccleubd 45577 cncfiooiccre 45924 itgioocnicc 46006 itgspltprt 46008 itgiccshift 46009 fourierdlem1 46137 fourierdlem20 46156 fourierdlem24 46160 fourierdlem25 46161 fourierdlem27 46163 fourierdlem43 46179 fourierdlem44 46180 fourierdlem50 46185 fourierdlem51 46186 fourierdlem52 46187 fourierdlem64 46199 fourierdlem73 46208 fourierdlem76 46211 fourierdlem79 46214 fourierdlem81 46216 fourierdlem92 46227 fourierdlem102 46237 fourierdlem103 46238 fourierdlem104 46239 fourierdlem114 46249 rrxsnicc 46329 salgencntex 46372 sge0p1 46443 hoidmv1lelem3 46622 hoidmvlelem1 46624 hoidmvlelem4 46627 |
| Copyright terms: Public domain | W3C validator |