MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccleub Structured version   Visualization version   GIF version

Theorem iccleub 13439
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
iccleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)

Proof of Theorem iccleub
StepHypRef Expression
1 elicc1 13428 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp3 1137 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶𝐵)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶𝐵))
433impia 1116 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2106   class class class wbr 5148  (class class class)co 7431  *cxr 11292  cle 11294  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-xr 11297  df-icc 13391
This theorem is referenced by:  supicc  13538  supiccub  13539  supicclub  13540  oprpiece1res1  24996  ivthlem1  25500  isosctrlem1  26876  ttgcontlem1  28914  broucube  37641  mblfinlem1  37644  ftc1cnnclem  37678  ftc2nc  37689  areaquad  43205  isosctrlem1ALT  44932  lefldiveq  45243  eliccelioc  45474  iccintsng  45476  eliccnelico  45482  eliccelicod  45483  inficc  45487  iccdificc  45492  iccleubd  45501  cncfiooiccre  45851  itgioocnicc  45933  itgspltprt  45935  itgiccshift  45936  fourierdlem1  46064  fourierdlem20  46083  fourierdlem24  46087  fourierdlem25  46088  fourierdlem27  46090  fourierdlem43  46106  fourierdlem44  46107  fourierdlem50  46112  fourierdlem51  46113  fourierdlem52  46114  fourierdlem64  46126  fourierdlem73  46135  fourierdlem76  46138  fourierdlem79  46141  fourierdlem81  46143  fourierdlem92  46154  fourierdlem102  46164  fourierdlem103  46165  fourierdlem104  46166  fourierdlem114  46176  rrxsnicc  46256  salgencntex  46299  sge0p1  46370  hoidmv1lelem3  46549  hoidmvlelem1  46551  hoidmvlelem4  46554
  Copyright terms: Public domain W3C validator