| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccleub | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
| Ref | Expression |
|---|---|
| iccleub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 13350 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐶 ≤ 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ≤ 𝐵)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝ*cxr 11207 ≤ cle 11209 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-xr 11212 df-icc 13313 |
| This theorem is referenced by: supicc 13462 supiccub 13463 supicclub 13464 oprpiece1res1 24849 ivthlem1 25352 isosctrlem1 26728 ttgcontlem1 28812 broucube 37648 mblfinlem1 37651 ftc1cnnclem 37685 ftc2nc 37696 areaquad 43205 isosctrlem1ALT 44923 lefldiveq 45290 eliccelioc 45519 iccintsng 45521 eliccnelico 45527 eliccelicod 45528 inficc 45532 iccdificc 45537 iccleubd 45546 cncfiooiccre 45893 itgioocnicc 45975 itgspltprt 45977 itgiccshift 45978 fourierdlem1 46106 fourierdlem20 46125 fourierdlem24 46129 fourierdlem25 46130 fourierdlem27 46132 fourierdlem43 46148 fourierdlem44 46149 fourierdlem50 46154 fourierdlem51 46155 fourierdlem52 46156 fourierdlem64 46168 fourierdlem73 46177 fourierdlem76 46180 fourierdlem79 46183 fourierdlem81 46185 fourierdlem92 46196 fourierdlem102 46206 fourierdlem103 46207 fourierdlem104 46208 fourierdlem114 46218 rrxsnicc 46298 salgencntex 46341 sge0p1 46412 hoidmv1lelem3 46591 hoidmvlelem1 46593 hoidmvlelem4 46596 |
| Copyright terms: Public domain | W3C validator |