Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iccleub | Structured version Visualization version GIF version |
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
Ref | Expression |
---|---|
iccleub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 13203 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
2 | simp3 1137 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐶 ≤ 𝐵) | |
3 | 1, 2 | syl6bi 252 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ≤ 𝐵)) |
4 | 3 | 3impia 1116 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5087 (class class class)co 7317 ℝ*cxr 11088 ≤ cle 11090 [,]cicc 13162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-iota 6418 df-fun 6468 df-fv 6474 df-ov 7320 df-oprab 7321 df-mpo 7322 df-xr 11093 df-icc 13166 |
This theorem is referenced by: supicc 13313 supiccub 13314 supicclub 13315 oprpiece1res1 24197 ivthlem1 24698 isosctrlem1 26051 ttgcontlem1 27388 broucube 35883 mblfinlem1 35886 ftc1cnnclem 35920 ftc2nc 35931 areaquad 41264 isosctrlem1ALT 42788 lefldiveq 43080 eliccelioc 43309 iccintsng 43311 eliccnelico 43317 eliccelicod 43318 inficc 43322 iccdificc 43327 iccleubd 43336 cncfiooiccre 43686 itgioocnicc 43768 itgspltprt 43770 itgiccshift 43771 fourierdlem1 43899 fourierdlem20 43918 fourierdlem24 43922 fourierdlem25 43923 fourierdlem27 43925 fourierdlem43 43941 fourierdlem44 43942 fourierdlem50 43947 fourierdlem51 43948 fourierdlem52 43949 fourierdlem64 43961 fourierdlem73 43970 fourierdlem76 43973 fourierdlem79 43976 fourierdlem81 43978 fourierdlem92 43989 fourierdlem102 43999 fourierdlem103 44000 fourierdlem104 44001 fourierdlem114 44011 rrxsnicc 44091 salgencntex 44132 sge0p1 44203 hoidmv1lelem3 44382 hoidmvlelem1 44384 hoidmvlelem4 44387 |
Copyright terms: Public domain | W3C validator |