MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccleub Structured version   Visualization version   GIF version

Theorem iccleub 12990
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
iccleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)

Proof of Theorem iccleub
StepHypRef Expression
1 elicc1 12979 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp3 1140 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶𝐵)
31, 2syl6bi 256 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶𝐵))
433impia 1119 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2110   class class class wbr 5053  (class class class)co 7213  *cxr 10866  cle 10868  [,]cicc 12938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-xr 10871  df-icc 12942
This theorem is referenced by:  supicc  13089  supiccub  13090  supicclub  13091  oprpiece1res1  23848  ivthlem1  24348  isosctrlem1  25701  ttgcontlem1  26976  broucube  35548  mblfinlem1  35551  ftc1cnnclem  35585  ftc2nc  35596  areaquad  40750  isosctrlem1ALT  42227  lefldiveq  42504  eliccelioc  42734  iccintsng  42736  eliccnelico  42742  eliccelicod  42743  inficc  42747  iccdificc  42752  iccleubd  42761  cncfiooiccre  43111  itgioocnicc  43193  itgspltprt  43195  itgiccshift  43196  fourierdlem1  43324  fourierdlem20  43343  fourierdlem24  43347  fourierdlem25  43348  fourierdlem27  43350  fourierdlem43  43366  fourierdlem44  43367  fourierdlem50  43372  fourierdlem51  43373  fourierdlem52  43374  fourierdlem64  43386  fourierdlem73  43395  fourierdlem76  43398  fourierdlem79  43401  fourierdlem81  43403  fourierdlem92  43414  fourierdlem102  43424  fourierdlem103  43425  fourierdlem104  43426  fourierdlem114  43436  rrxsnicc  43516  salgencntex  43557  sge0p1  43627  hoidmv1lelem3  43806  hoidmvlelem1  43808  hoidmvlelem4  43811
  Copyright terms: Public domain W3C validator