MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccleub Structured version   Visualization version   GIF version

Theorem iccleub 13134
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
iccleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)

Proof of Theorem iccleub
StepHypRef Expression
1 elicc1 13123 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp3 1137 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶𝐵)
31, 2syl6bi 252 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶𝐵))
433impia 1116 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  *cxr 11008  cle 11010  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-xr 11013  df-icc 13086
This theorem is referenced by:  supicc  13233  supiccub  13234  supicclub  13235  oprpiece1res1  24114  ivthlem1  24615  isosctrlem1  25968  ttgcontlem1  27252  broucube  35811  mblfinlem1  35814  ftc1cnnclem  35848  ftc2nc  35859  areaquad  41047  isosctrlem1ALT  42554  lefldiveq  42831  eliccelioc  43059  iccintsng  43061  eliccnelico  43067  eliccelicod  43068  inficc  43072  iccdificc  43077  iccleubd  43086  cncfiooiccre  43436  itgioocnicc  43518  itgspltprt  43520  itgiccshift  43521  fourierdlem1  43649  fourierdlem20  43668  fourierdlem24  43672  fourierdlem25  43673  fourierdlem27  43675  fourierdlem43  43691  fourierdlem44  43692  fourierdlem50  43697  fourierdlem51  43698  fourierdlem52  43699  fourierdlem64  43711  fourierdlem73  43720  fourierdlem76  43723  fourierdlem79  43726  fourierdlem81  43728  fourierdlem92  43739  fourierdlem102  43749  fourierdlem103  43750  fourierdlem104  43751  fourierdlem114  43761  rrxsnicc  43841  salgencntex  43882  sge0p1  43952  hoidmv1lelem3  44131  hoidmvlelem1  44133  hoidmvlelem4  44136
  Copyright terms: Public domain W3C validator