MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrre Structured version   Visualization version   GIF version

Theorem xrre 13185
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
Assertion
Ref Expression
xrre (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)

Proof of Theorem xrre
StepHypRef Expression
1 simprl 770 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → -∞ < 𝐴)
2 ltpnf 13136 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 < +∞)
32adantl 481 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 < +∞)
4 rexr 11281 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
5 pnfxr 11289 . . . . . . 7 +∞ ∈ ℝ*
6 xrlelttr 13172 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
75, 6mp3an3 1452 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
84, 7sylan2 593 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
93, 8mpan2d 694 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < +∞))
109imp 406 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴𝐵) → 𝐴 < +∞)
1110adantrl 716 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 < +∞)
12 xrrebnd 13184 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1312ad2antrr 726 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
141, 11, 13mpbir2and 713 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5119  cr 11128  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275
This theorem is referenced by:  xrrege0  13190  supxrre  13343  infxrre  13353  caucvgrlem  15689  pcgcd1  16897  tgioo  24735  ovolunlem1a  25449  ovoliunlem1  25455  ioombl1lem2  25512  itg2monolem2  25704  dvferm1lem  25940  radcnvle  26381  psercnlem1  26387  nmobndi  30756  ubthlem3  30853  nmophmi  32012  bdophsi  32077  bdopcoi  32079  orvclteel  34505  itg2addnclem  37695  itg2gt0cn  37699  areacirclem5  37736  eliocre  45538  fourierdlem87  46222  sge0ssre  46426
  Copyright terms: Public domain W3C validator