|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xrre | Structured version Visualization version GIF version | ||
| Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.) | 
| Ref | Expression | 
|---|---|
| xrre | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simprl 771 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → -∞ < 𝐴) | |
| 2 | ltpnf 13162 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → 𝐵 < +∞) | 
| 4 | rexr 11307 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 5 | pnfxr 11315 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 6 | xrlelttr 13198 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) → 𝐴 < +∞)) | |
| 7 | 5, 6 | mp3an3 1452 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) → 𝐴 < +∞)) | 
| 8 | 4, 7 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) → 𝐴 < +∞)) | 
| 9 | 3, 8 | mpan2d 694 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 < +∞)) | 
| 10 | 9 | imp 406 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → 𝐴 < +∞) | 
| 11 | 10 | adantrl 716 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 < +∞) | 
| 12 | xrrebnd 13210 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | |
| 13 | 12 | ad2antrr 726 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | 
| 14 | 1, 11, 13 | mpbir2and 713 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5143 ℝcr 11154 +∞cpnf 11292 -∞cmnf 11293 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 | 
| This theorem is referenced by: xrrege0 13216 supxrre 13369 infxrre 13378 caucvgrlem 15709 pcgcd1 16915 tgioo 24817 ovolunlem1a 25531 ovoliunlem1 25537 ioombl1lem2 25594 itg2monolem2 25786 dvferm1lem 26022 radcnvle 26463 psercnlem1 26469 nmobndi 30794 ubthlem3 30891 nmophmi 32050 bdophsi 32115 bdopcoi 32117 orvclteel 34475 itg2addnclem 37678 itg2gt0cn 37682 areacirclem5 37719 eliocre 45522 fourierdlem87 46208 sge0ssre 46412 | 
| Copyright terms: Public domain | W3C validator |