MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrre Structured version   Visualization version   GIF version

Theorem xrre 12903
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
Assertion
Ref Expression
xrre (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)

Proof of Theorem xrre
StepHypRef Expression
1 simprl 768 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → -∞ < 𝐴)
2 ltpnf 12856 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 < +∞)
32adantl 482 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 < +∞)
4 rexr 11021 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
5 pnfxr 11029 . . . . . . 7 +∞ ∈ ℝ*
6 xrlelttr 12890 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
75, 6mp3an3 1449 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
84, 7sylan2 593 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
93, 8mpan2d 691 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < +∞))
109imp 407 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴𝐵) → 𝐴 < +∞)
1110adantrl 713 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 < +∞)
12 xrrebnd 12902 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1312ad2antrr 723 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
141, 11, 13mpbir2and 710 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5074  cr 10870  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  xrrege0  12908  supxrre  13061  infxrre  13070  caucvgrlem  15384  pcgcd1  16578  tgioo  23959  ovolunlem1a  24660  ovoliunlem1  24666  ioombl1lem2  24723  itg2monolem2  24916  dvferm1lem  25148  radcnvle  25579  psercnlem1  25584  nmobndi  29137  ubthlem3  29234  nmophmi  30393  bdophsi  30458  bdopcoi  30460  orvclteel  32439  itg2addnclem  35828  itg2gt0cn  35832  areacirclem5  35869  eliocre  43047  fourierdlem87  43734  sge0ssre  43935
  Copyright terms: Public domain W3C validator