Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrre | Structured version Visualization version GIF version |
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.) |
Ref | Expression |
---|---|
xrre | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 768 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → -∞ < 𝐴) | |
2 | ltpnf 12856 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
3 | 2 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → 𝐵 < +∞) |
4 | rexr 11021 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
5 | pnfxr 11029 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
6 | xrlelttr 12890 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) → 𝐴 < +∞)) | |
7 | 5, 6 | mp3an3 1449 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) → 𝐴 < +∞)) |
8 | 4, 7 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) → 𝐴 < +∞)) |
9 | 3, 8 | mpan2d 691 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 < +∞)) |
10 | 9 | imp 407 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → 𝐴 < +∞) |
11 | 10 | adantrl 713 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 < +∞) |
12 | xrrebnd 12902 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | |
13 | 12 | ad2antrr 723 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) |
14 | 1, 11, 13 | mpbir2and 710 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: xrrege0 12908 supxrre 13061 infxrre 13070 caucvgrlem 15384 pcgcd1 16578 tgioo 23959 ovolunlem1a 24660 ovoliunlem1 24666 ioombl1lem2 24723 itg2monolem2 24916 dvferm1lem 25148 radcnvle 25579 psercnlem1 25584 nmobndi 29137 ubthlem3 29234 nmophmi 30393 bdophsi 30458 bdopcoi 30460 orvclteel 32439 itg2addnclem 35828 itg2gt0cn 35832 areacirclem5 35869 eliocre 43047 fourierdlem87 43734 sge0ssre 43935 |
Copyright terms: Public domain | W3C validator |