Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooltub Structured version   Visualization version   GIF version

Theorem iooltub 41662
Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iooltub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵)

Proof of Theorem iooltub
StepHypRef Expression
1 elioo2 12767 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
2 simp3 1130 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵) → 𝐶 < 𝐵)
31, 2syl6bi 254 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵))
433impia 1109 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079  wcel 2105   class class class wbr 5057  (class class class)co 7145  cr 10524  *cxr 10662   < clt 10663  (,)cioo 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-ioo 12730
This theorem is referenced by:  iooshift  41674  icoopn  41677  iooiinicc  41694  iooltubd  41696  iooiinioc  41708  lptre2pt  41797  limcresiooub  41799  limcresioolb  41800  sinaover2ne0  42025  dvbdfbdioolem1  42089  dvbdfbdioolem2  42090  ioodvbdlimc1lem1  42092  ioodvbdlimc2lem  42095  fourierdlem27  42296  fourierdlem28  42297  fourierdlem40  42309  fourierdlem41  42310  fourierdlem46  42314  fourierdlem48  42316  fourierdlem49  42317  fourierdlem57  42325  fourierdlem59  42327  fourierdlem62  42330  fourierdlem64  42332  fourierdlem68  42336  fourierdlem73  42341  fourierdlem76  42344  fourierdlem78  42346  fourierdlem84  42352  fourierdlem90  42358  fourierdlem92  42360  fourierdlem97  42365  fourierdlem103  42371  fourierdlem104  42372  fourierdlem111  42379  sqwvfoura  42390  sqwvfourb  42391  fouriersw  42393  etransclem23  42419  qndenserrnbllem  42456  ioorrnopnlem  42466  ioorrnopnxrlem  42468  hspdifhsp  42775  hoiqssbllem1  42781  hoiqssbllem2  42782  hspmbllem2  42786  iunhoiioolem  42834  pimiooltgt  42866  pimdecfgtioo  42872  pimincfltioo  42873  smfaddlem1  42916  smfmullem1  42943  smfmullem2  42944
  Copyright terms: Public domain W3C validator