Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooltub | Structured version Visualization version GIF version |
Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooltub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo2 12820 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp3 1135 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵) | |
3 | 1, 2 | syl6bi 256 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵)) |
4 | 3 | 3impia 1114 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 class class class wbr 5032 (class class class)co 7150 ℝcr 10574 ℝ*cxr 10712 < clt 10713 (,)cioo 12779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-pre-lttri 10649 ax-pre-lttrn 10650 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-ioo 12783 |
This theorem is referenced by: iooshift 42525 icoopn 42528 iooiinicc 42545 iooltubd 42547 iooiinioc 42559 lptre2pt 42648 limcresiooub 42650 limcresioolb 42651 sinaover2ne0 42876 dvbdfbdioolem1 42936 dvbdfbdioolem2 42937 ioodvbdlimc1lem1 42939 ioodvbdlimc2lem 42942 fourierdlem27 43142 fourierdlem28 43143 fourierdlem40 43155 fourierdlem41 43156 fourierdlem46 43160 fourierdlem48 43162 fourierdlem49 43163 fourierdlem57 43171 fourierdlem59 43173 fourierdlem62 43176 fourierdlem64 43178 fourierdlem68 43182 fourierdlem73 43187 fourierdlem76 43190 fourierdlem78 43192 fourierdlem84 43198 fourierdlem90 43204 fourierdlem92 43206 fourierdlem97 43211 fourierdlem103 43217 fourierdlem104 43218 fourierdlem111 43225 sqwvfoura 43236 sqwvfourb 43237 fouriersw 43239 etransclem23 43265 qndenserrnbllem 43302 ioorrnopnlem 43312 ioorrnopnxrlem 43314 hspdifhsp 43621 hoiqssbllem1 43627 hoiqssbllem2 43628 hspmbllem2 43632 iunhoiioolem 43680 pimiooltgt 43712 pimdecfgtioo 43718 pimincfltioo 43719 smfaddlem1 43762 smfmullem1 43789 smfmullem2 43790 |
Copyright terms: Public domain | W3C validator |