| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iooltub | Structured version Visualization version GIF version | ||
| Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| iooltub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo2 13286 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 ℝ*cxr 11145 < clt 11146 (,)cioo 13245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ioo 13249 |
| This theorem is referenced by: iooshift 45568 icoopn 45571 iooiinicc 45588 iooltubd 45590 iooiinioc 45602 lptre2pt 45684 limcresiooub 45686 limcresioolb 45687 sinaover2ne0 45912 dvbdfbdioolem1 45972 dvbdfbdioolem2 45973 ioodvbdlimc1lem1 45975 ioodvbdlimc2lem 45978 fourierdlem27 46178 fourierdlem28 46179 fourierdlem40 46191 fourierdlem41 46192 fourierdlem46 46196 fourierdlem48 46198 fourierdlem49 46199 fourierdlem57 46207 fourierdlem59 46209 fourierdlem62 46212 fourierdlem64 46214 fourierdlem68 46218 fourierdlem73 46223 fourierdlem76 46226 fourierdlem78 46228 fourierdlem84 46234 fourierdlem90 46240 fourierdlem92 46242 fourierdlem97 46247 fourierdlem103 46253 fourierdlem104 46254 fourierdlem111 46261 sqwvfoura 46272 sqwvfourb 46273 fouriersw 46275 etransclem23 46301 qndenserrnbllem 46338 ioorrnopnlem 46348 ioorrnopnxrlem 46350 hspdifhsp 46660 hoiqssbllem1 46666 hoiqssbllem2 46667 hspmbllem2 46671 iunhoiioolem 46719 pimiooltgt 46754 pimdecfgtioo 46761 pimincfltioo 46762 smfaddlem1 46807 smfmullem1 46835 smfmullem2 46836 |
| Copyright terms: Public domain | W3C validator |