| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iooltub | Structured version Visualization version GIF version | ||
| Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| iooltub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo2 13354 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 ℝ*cxr 11214 < clt 11215 (,)cioo 13313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ioo 13317 |
| This theorem is referenced by: iooshift 45527 icoopn 45530 iooiinicc 45547 iooltubd 45549 iooiinioc 45561 lptre2pt 45645 limcresiooub 45647 limcresioolb 45648 sinaover2ne0 45873 dvbdfbdioolem1 45933 dvbdfbdioolem2 45934 ioodvbdlimc1lem1 45936 ioodvbdlimc2lem 45939 fourierdlem27 46139 fourierdlem28 46140 fourierdlem40 46152 fourierdlem41 46153 fourierdlem46 46157 fourierdlem48 46159 fourierdlem49 46160 fourierdlem57 46168 fourierdlem59 46170 fourierdlem62 46173 fourierdlem64 46175 fourierdlem68 46179 fourierdlem73 46184 fourierdlem76 46187 fourierdlem78 46189 fourierdlem84 46195 fourierdlem90 46201 fourierdlem92 46203 fourierdlem97 46208 fourierdlem103 46214 fourierdlem104 46215 fourierdlem111 46222 sqwvfoura 46233 sqwvfourb 46234 fouriersw 46236 etransclem23 46262 qndenserrnbllem 46299 ioorrnopnlem 46309 ioorrnopnxrlem 46311 hspdifhsp 46621 hoiqssbllem1 46627 hoiqssbllem2 46628 hspmbllem2 46632 iunhoiioolem 46680 pimiooltgt 46715 pimdecfgtioo 46722 pimincfltioo 46723 smfaddlem1 46768 smfmullem1 46796 smfmullem2 46797 |
| Copyright terms: Public domain | W3C validator |