| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iooltub | Structured version Visualization version GIF version | ||
| Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| iooltub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo2 13347 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 ℝ*cxr 11207 < clt 11208 (,)cioo 13306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 |
| This theorem is referenced by: iooshift 45520 icoopn 45523 iooiinicc 45540 iooltubd 45542 iooiinioc 45554 lptre2pt 45638 limcresiooub 45640 limcresioolb 45641 sinaover2ne0 45866 dvbdfbdioolem1 45926 dvbdfbdioolem2 45927 ioodvbdlimc1lem1 45929 ioodvbdlimc2lem 45932 fourierdlem27 46132 fourierdlem28 46133 fourierdlem40 46145 fourierdlem41 46146 fourierdlem46 46150 fourierdlem48 46152 fourierdlem49 46153 fourierdlem57 46161 fourierdlem59 46163 fourierdlem62 46166 fourierdlem64 46168 fourierdlem68 46172 fourierdlem73 46177 fourierdlem76 46180 fourierdlem78 46182 fourierdlem84 46188 fourierdlem90 46194 fourierdlem92 46196 fourierdlem97 46201 fourierdlem103 46207 fourierdlem104 46208 fourierdlem111 46215 sqwvfoura 46226 sqwvfourb 46227 fouriersw 46229 etransclem23 46255 qndenserrnbllem 46292 ioorrnopnlem 46302 ioorrnopnxrlem 46304 hspdifhsp 46614 hoiqssbllem1 46620 hoiqssbllem2 46621 hspmbllem2 46625 iunhoiioolem 46673 pimiooltgt 46708 pimdecfgtioo 46715 pimincfltioo 46716 smfaddlem1 46761 smfmullem1 46789 smfmullem2 46790 |
| Copyright terms: Public domain | W3C validator |