| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iooltub | Structured version Visualization version GIF version | ||
| Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| iooltub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo2 13290 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7354 ℝcr 11014 ℝ*cxr 11154 < clt 11155 (,)cioo 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-ioo 13253 |
| This theorem is referenced by: iooshift 45649 icoopn 45652 iooiinicc 45669 iooltubd 45671 iooiinioc 45683 lptre2pt 45765 limcresiooub 45767 limcresioolb 45768 sinaover2ne0 45993 dvbdfbdioolem1 46053 dvbdfbdioolem2 46054 ioodvbdlimc1lem1 46056 ioodvbdlimc2lem 46059 fourierdlem27 46259 fourierdlem28 46260 fourierdlem40 46272 fourierdlem41 46273 fourierdlem46 46277 fourierdlem48 46279 fourierdlem49 46280 fourierdlem57 46288 fourierdlem59 46290 fourierdlem62 46293 fourierdlem64 46295 fourierdlem68 46299 fourierdlem73 46304 fourierdlem76 46307 fourierdlem78 46309 fourierdlem84 46315 fourierdlem90 46321 fourierdlem92 46323 fourierdlem97 46328 fourierdlem103 46334 fourierdlem104 46335 fourierdlem111 46342 sqwvfoura 46353 sqwvfourb 46354 fouriersw 46356 etransclem23 46382 qndenserrnbllem 46419 ioorrnopnlem 46429 ioorrnopnxrlem 46431 hspdifhsp 46741 hoiqssbllem1 46747 hoiqssbllem2 46748 hspmbllem2 46752 iunhoiioolem 46800 pimdecfgtioo 46842 pimincfltioo 46843 smfaddlem1 46888 smfmullem1 46916 smfmullem2 46917 |
| Copyright terms: Public domain | W3C validator |