Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooltub | Structured version Visualization version GIF version |
Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooltub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo2 13049 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp3 1136 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵) | |
3 | 1, 2 | syl6bi 252 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵)) |
4 | 3 | 3impia 1115 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 ℝ*cxr 10939 < clt 10940 (,)cioo 13008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioo 13012 |
This theorem is referenced by: iooshift 42950 icoopn 42953 iooiinicc 42970 iooltubd 42972 iooiinioc 42984 lptre2pt 43071 limcresiooub 43073 limcresioolb 43074 sinaover2ne0 43299 dvbdfbdioolem1 43359 dvbdfbdioolem2 43360 ioodvbdlimc1lem1 43362 ioodvbdlimc2lem 43365 fourierdlem27 43565 fourierdlem28 43566 fourierdlem40 43578 fourierdlem41 43579 fourierdlem46 43583 fourierdlem48 43585 fourierdlem49 43586 fourierdlem57 43594 fourierdlem59 43596 fourierdlem62 43599 fourierdlem64 43601 fourierdlem68 43605 fourierdlem73 43610 fourierdlem76 43613 fourierdlem78 43615 fourierdlem84 43621 fourierdlem90 43627 fourierdlem92 43629 fourierdlem97 43634 fourierdlem103 43640 fourierdlem104 43641 fourierdlem111 43648 sqwvfoura 43659 sqwvfourb 43660 fouriersw 43662 etransclem23 43688 qndenserrnbllem 43725 ioorrnopnlem 43735 ioorrnopnxrlem 43737 hspdifhsp 44044 hoiqssbllem1 44050 hoiqssbllem2 44051 hspmbllem2 44055 iunhoiioolem 44103 pimiooltgt 44135 pimdecfgtioo 44141 pimincfltioo 44142 smfaddlem1 44185 smfmullem1 44212 smfmullem2 44213 |
Copyright terms: Public domain | W3C validator |