Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooltub Structured version   Visualization version   GIF version

Theorem iooltub 42938
Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iooltub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵)

Proof of Theorem iooltub
StepHypRef Expression
1 elioo2 13049 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
2 simp3 1136 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵) → 𝐶 < 𝐵)
31, 2syl6bi 252 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵))
433impia 1115 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  *cxr 10939   < clt 10940  (,)cioo 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioo 13012
This theorem is referenced by:  iooshift  42950  icoopn  42953  iooiinicc  42970  iooltubd  42972  iooiinioc  42984  lptre2pt  43071  limcresiooub  43073  limcresioolb  43074  sinaover2ne0  43299  dvbdfbdioolem1  43359  dvbdfbdioolem2  43360  ioodvbdlimc1lem1  43362  ioodvbdlimc2lem  43365  fourierdlem27  43565  fourierdlem28  43566  fourierdlem40  43578  fourierdlem41  43579  fourierdlem46  43583  fourierdlem48  43585  fourierdlem49  43586  fourierdlem57  43594  fourierdlem59  43596  fourierdlem62  43599  fourierdlem64  43601  fourierdlem68  43605  fourierdlem73  43610  fourierdlem76  43613  fourierdlem78  43615  fourierdlem84  43621  fourierdlem90  43627  fourierdlem92  43629  fourierdlem97  43634  fourierdlem103  43640  fourierdlem104  43641  fourierdlem111  43648  sqwvfoura  43659  sqwvfourb  43660  fouriersw  43662  etransclem23  43688  qndenserrnbllem  43725  ioorrnopnlem  43735  ioorrnopnxrlem  43737  hspdifhsp  44044  hoiqssbllem1  44050  hoiqssbllem2  44051  hspmbllem2  44055  iunhoiioolem  44103  pimiooltgt  44135  pimdecfgtioo  44141  pimincfltioo  44142  smfaddlem1  44185  smfmullem1  44212  smfmullem2  44213
  Copyright terms: Public domain W3C validator