Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooltub Structured version   Visualization version   GIF version

Theorem iooltub 44223
Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iooltub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵)

Proof of Theorem iooltub
StepHypRef Expression
1 elioo2 13365 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
2 simp3 1139 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵) → 𝐶 < 𝐵)
31, 2syl6bi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵))
433impia 1118 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wcel 2107   class class class wbr 5149  (class class class)co 7409  cr 11109  *cxr 11247   < clt 11248  (,)cioo 13324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-ioo 13328
This theorem is referenced by:  iooshift  44235  icoopn  44238  iooiinicc  44255  iooltubd  44257  iooiinioc  44269  lptre2pt  44356  limcresiooub  44358  limcresioolb  44359  sinaover2ne0  44584  dvbdfbdioolem1  44644  dvbdfbdioolem2  44645  ioodvbdlimc1lem1  44647  ioodvbdlimc2lem  44650  fourierdlem27  44850  fourierdlem28  44851  fourierdlem40  44863  fourierdlem41  44864  fourierdlem46  44868  fourierdlem48  44870  fourierdlem49  44871  fourierdlem57  44879  fourierdlem59  44881  fourierdlem62  44884  fourierdlem64  44886  fourierdlem68  44890  fourierdlem73  44895  fourierdlem76  44898  fourierdlem78  44900  fourierdlem84  44906  fourierdlem90  44912  fourierdlem92  44914  fourierdlem97  44919  fourierdlem103  44925  fourierdlem104  44926  fourierdlem111  44933  sqwvfoura  44944  sqwvfourb  44945  fouriersw  44947  etransclem23  44973  qndenserrnbllem  45010  ioorrnopnlem  45020  ioorrnopnxrlem  45022  hspdifhsp  45332  hoiqssbllem1  45338  hoiqssbllem2  45339  hspmbllem2  45343  iunhoiioolem  45391  pimiooltgt  45426  pimdecfgtioo  45433  pimincfltioo  45434  smfaddlem1  45479  smfmullem1  45507  smfmullem2  45508
  Copyright terms: Public domain W3C validator