Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrncard Structured version   Visualization version   GIF version

Theorem elrncard 41132
Description: Let us define a cardinal number to be an element 𝐴 ∈ On such that 𝐴 is not equipotent with any 𝑥𝐴. (Contributed by RP, 1-Oct-2023.)
Assertion
Ref Expression
elrncard (𝐴 ∈ ran card ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elrncard
StepHypRef Expression
1 iscard4 41130 . 2 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
2 iscard5 41131 . 2 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
31, 2bitr3i 276 1 (𝐴 ∈ ran card ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5073  ran crn 5585  Oncon0 6259  cfv 6426  cen 8717  cardccrd 9703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-ord 6262  df-on 6263  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-card 9707
This theorem is referenced by:  harval3  41133  alephiso3  41147
  Copyright terms: Public domain W3C validator