MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzfz2b Structured version   Visualization version   GIF version

Theorem eluzfz2b 13264
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.)
Assertion
Ref Expression
eluzfz2b (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (𝑀...𝑁))

Proof of Theorem eluzfz2b
StepHypRef Expression
1 eluzfz2 13263 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2 elfzuz 13251 . 2 (𝑁 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
31, 2impbii 208 1 (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2110  cfv 6432  (class class class)co 7271  cuz 12581  ...cfz 13238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-pre-lttri 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-neg 11208  df-z 12320  df-uz 12582  df-fz 13239
This theorem is referenced by:  smupval  16193  smueqlem  16195  smumul  16198  efgtlen  19330  dvntaylp  25528  taylthlem1  25530
  Copyright terms: Public domain W3C validator