![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzfz2b | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.) |
Ref | Expression |
---|---|
eluzfz2b | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzfz2 12641 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
2 | elfzuz 12630 | . 2 ⊢ (𝑁 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
3 | 1, 2 | impbii 201 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (𝑀...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2166 ‘cfv 6122 (class class class)co 6904 ℤ≥cuz 11967 ...cfz 12618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-pre-lttri 10325 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-1st 7427 df-2nd 7428 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-neg 10587 df-z 11704 df-uz 11968 df-fz 12619 |
This theorem is referenced by: smupval 15582 smueqlem 15584 smumul 15587 efgtlen 18489 dvntaylp 24523 taylthlem1 24525 |
Copyright terms: Public domain | W3C validator |