MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzfz2b Structured version   Visualization version   GIF version

Theorem eluzfz2b 13570
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.)
Assertion
Ref Expression
eluzfz2b (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (𝑀...𝑁))

Proof of Theorem eluzfz2b
StepHypRef Expression
1 eluzfz2 13569 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2 elfzuz 13557 . 2 (𝑁 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
31, 2impbii 209 1 (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2106  cfv 6563  (class class class)co 7431  cuz 12876  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-neg 11493  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  smupval  16522  smueqlem  16524  smumul  16527  efgtlen  19759  dvntaylp  26428  taylthlem1  26430
  Copyright terms: Public domain W3C validator