MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smumul Structured version   Visualization version   GIF version

Theorem smumul 16463
Description: For sequences that correspond to valid integers, the sequence multiplication function produces the sequence for the product. This is effectively a proof of the correctness of the multiplication process, implemented in terms of logic gates for df-sad 16421, whose correctness is verified in sadadd 16437.

Outside this range, the sequences cannot be representing integers, but the smul function still "works". This extended function is best interpreted in terms of the ring structure of the 2-adic integers. (Contributed by Mario Carneiro, 22-Sep-2016.)

Assertion
Ref Expression
smumul ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) smul (bits‘𝐵)) = (bits‘(𝐴 · 𝐵)))

Proof of Theorem smumul
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bitsss 16396 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
2 bitsss 16396 . . . . . 6 (bits‘𝐵) ⊆ ℕ0
3 smucl 16454 . . . . . 6 (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) smul (bits‘𝐵)) ⊆ ℕ0)
41, 2, 3mp2an 692 . . . . 5 ((bits‘𝐴) smul (bits‘𝐵)) ⊆ ℕ0
54sseli 3942 . . . 4 (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) → 𝑘 ∈ ℕ0)
65a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) → 𝑘 ∈ ℕ0))
7 bitsss 16396 . . . . 5 (bits‘(𝐴 · 𝐵)) ⊆ ℕ0
87sseli 3942 . . . 4 (𝑘 ∈ (bits‘(𝐴 · 𝐵)) → 𝑘 ∈ ℕ0)
98a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ (bits‘(𝐴 · 𝐵)) → 𝑘 ∈ ℕ0))
10 simpll 766 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℤ)
11 simplr 768 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℤ)
12 simpr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
13 1nn0 12458 . . . . . . . . . . . . . 14 1 ∈ ℕ0
1413a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
1512, 14nn0addcld 12507 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
1610, 11, 15smumullem 16462 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))
1716ineq1d 4182 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) ∩ (0..^(𝑘 + 1))))
18 2nn 12259 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
1918a1i 11 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℕ)
2019, 15nnexpcld 14210 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
2110, 20zmodcld 13854 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) ∈ ℕ0)
2221nn0zd 12555 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) ∈ ℤ)
2322, 11zmulcld 12644 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) ∈ ℤ)
24 bitsmod 16406 . . . . . . . . . . 11 ((((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ0) → (bits‘(((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) ∩ (0..^(𝑘 + 1))))
2523, 15, 24syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘(((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) ∩ (0..^(𝑘 + 1))))
2617, 25eqtr4d 2767 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (bits‘(((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1)))))
27 inass 4191 . . . . . . . . . . . . 13 (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) = ((bits‘𝐴) ∩ ((0..^(𝑘 + 1)) ∩ (0..^(𝑘 + 1))))
28 inidm 4190 . . . . . . . . . . . . . 14 ((0..^(𝑘 + 1)) ∩ (0..^(𝑘 + 1))) = (0..^(𝑘 + 1))
2928ineq2i 4180 . . . . . . . . . . . . 13 ((bits‘𝐴) ∩ ((0..^(𝑘 + 1)) ∩ (0..^(𝑘 + 1)))) = ((bits‘𝐴) ∩ (0..^(𝑘 + 1)))
3027, 29eqtri 2752 . . . . . . . . . . . 12 (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) = ((bits‘𝐴) ∩ (0..^(𝑘 + 1)))
3130oveq1i 7397 . . . . . . . . . . 11 ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) = (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1))))
3231ineq1i 4179 . . . . . . . . . 10 (((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) ∩ (0..^(𝑘 + 1))) = ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) ∩ (0..^(𝑘 + 1)))
33 inss1 4200 . . . . . . . . . . . 12 ((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ⊆ (bits‘𝐴)
341a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
3533, 34sstrid 3958 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ⊆ ℕ0)
362a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘𝐵) ⊆ ℕ0)
3735, 36, 15smueq 16461 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) ∩ (0..^(𝑘 + 1))))
3834, 36, 15smueq 16461 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) ∩ (0..^(𝑘 + 1))))
3932, 37, 383eqtr4a 2790 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))))
4020nnrpd 12993 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℝ+)
4110zred 12638 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
42 modabs2 13867 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (2↑(𝑘 + 1)) ∈ ℝ+) → ((𝐴 mod (2↑(𝑘 + 1))) mod (2↑(𝑘 + 1))) = (𝐴 mod (2↑(𝑘 + 1))))
4341, 40, 42syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) mod (2↑(𝑘 + 1))) = (𝐴 mod (2↑(𝑘 + 1))))
44 eqidd 2730 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐵 mod (2↑(𝑘 + 1))) = (𝐵 mod (2↑(𝑘 + 1))))
4522, 10, 11, 11, 40, 43, 44modmul12d 13890 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1))) = ((𝐴 · 𝐵) mod (2↑(𝑘 + 1))))
4645fveq2d 6862 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘(((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1)))) = (bits‘((𝐴 · 𝐵) mod (2↑(𝑘 + 1)))))
4726, 39, 463eqtr3d 2772 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (bits‘((𝐴 · 𝐵) mod (2↑(𝑘 + 1)))))
4810, 11zmulcld 12644 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝐵) ∈ ℤ)
49 bitsmod 16406 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ0) → (bits‘((𝐴 · 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1))))
5048, 15, 49syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘((𝐴 · 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1))))
5147, 50eqtrd 2764 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1))))
5251eleq2d 2814 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1)))))
53 elin 3930 . . . . . 6 (𝑘 ∈ (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
54 elin 3930 . . . . . 6 (𝑘 ∈ ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 · 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
5552, 53, 543bitr3g 313 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 · 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
56 nn0uz 12835 . . . . . . . . 9 0 = (ℤ‘0)
5712, 56eleqtrdi 2838 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
58 eluzfz2b 13494 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) ↔ 𝑘 ∈ (0...𝑘))
5957, 58sylib 218 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘))
6012nn0zd 12555 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
61 fzval3 13695 . . . . . . . 8 (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1)))
6260, 61syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1)))
6359, 62eleqtrd 2830 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1)))
6463biantrud 531 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ↔ (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
6563biantrud 531 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (bits‘(𝐴 · 𝐵)) ↔ (𝑘 ∈ (bits‘(𝐴 · 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
6655, 64, 653bitr4d 311 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 · 𝐵))))
6766ex 412 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 · 𝐵)))))
686, 9, 67pm5.21ndd 379 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 · 𝐵))))
6968eqrdv 2727 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) smul (bits‘𝐵)) = (bits‘(𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3913  wss 3914  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  ..^cfzo 13615   mod cmo 13831  cexp 14026  bitscbits 16389   smul csmu 16391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-bits 16392  df-sad 16421  df-smu 16446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator