![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfz3 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 21-Jul-2005.) |
Ref | Expression |
---|---|
elfz3 | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzid 11945 | . 2 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
2 | eluzfz1 12602 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ (𝑁...𝑁)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ‘cfv 6101 (class class class)co 6878 ℤcz 11666 ℤ≥cuz 11930 ...cfz 12580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-pre-lttri 10298 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-neg 10559 df-z 11667 df-uz 11931 df-fz 12581 |
This theorem is referenced by: fzsn 12637 fz1sbc 12670 prinfzo0 12762 seqf1o 13096 hashbc 13486 vdwlem8 16025 vdwlem13 16030 coefv0 24345 coemulc 24352 0pthon 27471 |
Copyright terms: Public domain | W3C validator |