![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfz3 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 21-Jul-2005.) |
Ref | Expression |
---|---|
elfz3 | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzid 12918 | . 2 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
2 | eluzfz1 13591 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ (𝑁...𝑁)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: fzsn 13626 fz1sbc 13660 prinfzo0 13755 seqf1o 14094 hashbc 14502 vdwlem8 17035 vdwlem13 17040 coefv0 26307 coemulc 26314 0pthon 30159 metakunt15 42176 metakunt16 42177 |
Copyright terms: Public domain | W3C validator |