| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusecsub | Structured version Visualization version GIF version | ||
| Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.) |
| Ref | Expression |
|---|---|
| qusecsub.x | ⊢ 𝐵 = (Base‘𝐺) |
| qusecsub.n | ⊢ − = (-g‘𝐺) |
| qusecsub.r | ⊢ ∼ = (𝐺 ~QG 𝑆) |
| Ref | Expression |
|---|---|
| qusecsub | ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ = [𝑌] ∼ ↔ (𝑌 − 𝑋) ∈ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusecsub.x | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | subgss 19048 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| 3 | 2 | anim2i 617 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵)) |
| 5 | qusecsub.n | . . . 4 ⊢ − = (-g‘𝐺) | |
| 6 | qusecsub.r | . . . 4 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
| 7 | 1, 5, 6 | eqgabl 19754 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵) → (𝑋 ∼ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 − 𝑋) ∈ 𝑆))) |
| 8 | 4, 7 | syl 17 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 − 𝑋) ∈ 𝑆))) |
| 9 | 1, 6 | eqger 19098 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∼ Er 𝐵) |
| 10 | 9 | ad2antlr 727 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ∼ Er 𝐵) |
| 11 | simprl 770 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 12 | 10, 11 | erth 8685 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ [𝑋] ∼ = [𝑌] ∼ )) |
| 13 | df-3an 1088 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 − 𝑋) ∈ 𝑆) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 − 𝑋) ∈ 𝑆)) | |
| 14 | ibar 528 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑌 − 𝑋) ∈ 𝑆 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 − 𝑋) ∈ 𝑆))) | |
| 15 | 14 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑌 − 𝑋) ∈ 𝑆 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 − 𝑋) ∈ 𝑆))) |
| 16 | 13, 15 | bitr4id 290 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 − 𝑋) ∈ 𝑆) ↔ (𝑌 − 𝑋) ∈ 𝑆)) |
| 17 | 8, 12, 16 | 3bitr3d 309 | 1 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ = [𝑌] ∼ ↔ (𝑌 − 𝑋) ∈ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Er wer 8628 [cec 8629 Basecbs 17127 -gcsg 18856 SubGrpcsubg 19041 ~QG cqg 19043 Abelcabl 19701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-ec 8633 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-eqg 19046 df-cmn 19702 df-abl 19703 |
| This theorem is referenced by: rngqiprngimf1lem 21240 rngqiprngimfo 21247 rngqiprngfulem4 21260 |
| Copyright terms: Public domain | W3C validator |