MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1val Structured version   Visualization version   GIF version

Theorem evls1val 22325
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.)
Hypotheses
Ref Expression
evls1fval.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1fval.e 𝐸 = (1o evalSub 𝑆)
evls1fval.b 𝐵 = (Base‘𝑆)
evls1val.m 𝑀 = (1o mPoly (𝑆s 𝑅))
evls1val.k 𝐾 = (Base‘𝑀)
Assertion
Ref Expression
evls1val ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Distinct variable group:   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝑄(𝑦)   𝑅(𝑦)   𝑆(𝑦)   𝐸(𝑦)   𝐾(𝑦)   𝑀(𝑦)

Proof of Theorem evls1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evls1fval.b . . . . . . . 8 𝐵 = (Base‘𝑆)
21subrgss 20573 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
32adantl 481 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
4 elpwg 4602 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
54adantl 481 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
63, 5mpbird 257 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵)
7 evls1fval.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
8 evls1fval.e . . . . . 6 𝐸 = (1o evalSub 𝑆)
97, 8, 1evls1fval 22324 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
106, 9syldan 591 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
1110fveq1d 6907 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴))
12113adant3 1132 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴))
13 1on 8519 . . . . 5 1o ∈ On
14 simp1 1136 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝑆 ∈ CRing)
15 simp2 1137 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝑅 ∈ (SubRing‘𝑆))
168fveq1i 6906 . . . . . 6 (𝐸𝑅) = ((1o evalSub 𝑆)‘𝑅)
17 evls1val.m . . . . . 6 𝑀 = (1o mPoly (𝑆s 𝑅))
18 eqid 2736 . . . . . 6 (𝑆s 𝑅) = (𝑆s 𝑅)
19 eqid 2736 . . . . . 6 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
2016, 17, 18, 19, 1evlsrhm 22113 . . . . 5 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))))
2113, 14, 15, 20mp3an2i 1467 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))))
22 evls1val.k . . . . 5 𝐾 = (Base‘𝑀)
23 eqid 2736 . . . . 5 (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o)))
2422, 23rhmf 20486 . . . 4 ((𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))) → (𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))))
2521, 24syl 17 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))))
26 simp3 1138 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝐴𝐾)
27 fvco3 7007 . . 3 (((𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)))
2825, 26, 27syl2anc 584 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)))
2925, 26ffvelcdmd 7104 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝐸𝑅)‘𝐴) ∈ (Base‘(𝑆s (𝐵m 1o))))
30 ovex 7465 . . . . 5 (𝐵m 1o) ∈ V
3119, 1pwsbas 17533 . . . . 5 ((𝑆 ∈ CRing ∧ (𝐵m 1o) ∈ V) → (𝐵m (𝐵m 1o)) = (Base‘(𝑆s (𝐵m 1o))))
3214, 30, 31sylancl 586 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐵m (𝐵m 1o)) = (Base‘(𝑆s (𝐵m 1o))))
3329, 32eleqtrrd 2843 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝐸𝑅)‘𝐴) ∈ (𝐵m (𝐵m 1o)))
34 coeq1 5867 . . . 4 (𝑥 = ((𝐸𝑅)‘𝐴) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
35 eqid 2736 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
36 fvex 6918 . . . . 5 ((𝐸𝑅)‘𝐴) ∈ V
371fvexi 6919 . . . . . 6 𝐵 ∈ V
3837mptex 7244 . . . . 5 (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V
3936, 38coex 7953 . . . 4 (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V
4034, 35, 39fvmpt 7015 . . 3 (((𝐸𝑅)‘𝐴) ∈ (𝐵m (𝐵m 1o)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4133, 40syl 17 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4212, 28, 413eqtrd 2780 1 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3479  wss 3950  𝒫 cpw 4599  {csn 4625  cmpt 5224   × cxp 5682  ccom 5688  Oncon0 6383  wf 6556  cfv 6560  (class class class)co 7432  1oc1o 8500  m cmap 8867  Basecbs 17248  s cress 17275  s cpws 17492  CRingccrg 20232   RingHom crh 20470  SubRingcsubrg 20570   mPoly cmpl 21927   evalSub ces 22097   evalSub1 ces1 22318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-assa 21874  df-asp 21875  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-evls 22099  df-evls1 22320
This theorem is referenced by:  evls1var  22343
  Copyright terms: Public domain W3C validator