Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evls1val | Structured version Visualization version GIF version |
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.) |
Ref | Expression |
---|---|
evls1fval.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1fval.e | ⊢ 𝐸 = (1o evalSub 𝑆) |
evls1fval.b | ⊢ 𝐵 = (Base‘𝑆) |
evls1val.m | ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) |
evls1val.k | ⊢ 𝐾 = (Base‘𝑀) |
Ref | Expression |
---|---|
evls1val | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1fval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑆) | |
2 | 1 | subrgss 20025 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
3 | 2 | adantl 482 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
4 | elpwg 4536 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
5 | 4 | adantl 482 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
6 | 3, 5 | mpbird 256 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
7 | evls1fval.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
8 | evls1fval.e | . . . . . 6 ⊢ 𝐸 = (1o evalSub 𝑆) | |
9 | 7, 8, 1 | evls1fval 21485 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) |
10 | 6, 9 | syldan 591 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) |
11 | 10 | fveq1d 6776 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄‘𝐴) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴)) |
12 | 11 | 3adant3 1131 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴)) |
13 | 1on 8309 | . . . . 5 ⊢ 1o ∈ On | |
14 | simp1 1135 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝑆 ∈ CRing) | |
15 | simp2 1136 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝑅 ∈ (SubRing‘𝑆)) | |
16 | 8 | fveq1i 6775 | . . . . . 6 ⊢ (𝐸‘𝑅) = ((1o evalSub 𝑆)‘𝑅) |
17 | evls1val.m | . . . . . 6 ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) | |
18 | eqid 2738 | . . . . . 6 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
19 | eqid 2738 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 1o)) = (𝑆 ↑s (𝐵 ↑m 1o)) | |
20 | 16, 17, 18, 19, 1 | evlsrhm 21298 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
21 | 13, 14, 15, 20 | mp3an2i 1465 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
22 | evls1val.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑀) | |
23 | eqid 2738 | . . . . 5 ⊢ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) | |
24 | 22, 23 | rhmf 19970 | . . . 4 ⊢ ((𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o))) → (𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
25 | 21, 24 | syl 17 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
26 | simp3 1137 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) | |
27 | fvco3 6867 | . . 3 ⊢ (((𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴))) | |
28 | 25, 26, 27 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴))) |
29 | 25, 26 | ffvelrnd 6962 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝐸‘𝑅)‘𝐴) ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
30 | ovex 7308 | . . . . 5 ⊢ (𝐵 ↑m 1o) ∈ V | |
31 | 19, 1 | pwsbas 17198 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ (𝐵 ↑m 1o) ∈ V) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
32 | 14, 30, 31 | sylancl 586 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
33 | 29, 32 | eleqtrrd 2842 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝐸‘𝑅)‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o))) |
34 | coeq1 5766 | . . . 4 ⊢ (𝑥 = ((𝐸‘𝑅)‘𝐴) → (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
35 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
36 | fvex 6787 | . . . . 5 ⊢ ((𝐸‘𝑅)‘𝐴) ∈ V | |
37 | 1 | fvexi 6788 | . . . . . 6 ⊢ 𝐵 ∈ V |
38 | 37 | mptex 7099 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) ∈ V |
39 | 36, 38 | coex 7777 | . . . 4 ⊢ (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ V |
40 | 34, 35, 39 | fvmpt 6875 | . . 3 ⊢ (((𝐸‘𝑅)‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o)) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴)) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
41 | 33, 40 | syl 17 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴)) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
42 | 12, 28, 41 | 3eqtrd 2782 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ↦ cmpt 5157 × cxp 5587 ∘ ccom 5593 Oncon0 6266 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1oc1o 8290 ↑m cmap 8615 Basecbs 16912 ↾s cress 16941 ↑s cpws 17157 CRingccrg 19784 RingHom crh 19956 SubRingcsubrg 20020 mPoly cmpl 21109 evalSub ces 21280 evalSub1 ces1 21479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-srg 19742 df-ring 19785 df-cring 19786 df-rnghom 19959 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-assa 21060 df-asp 21061 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-evls 21282 df-evls1 21481 |
This theorem is referenced by: evls1var 21504 |
Copyright terms: Public domain | W3C validator |