MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1val Structured version   Visualization version   GIF version

Theorem evls1val 22207
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.)
Hypotheses
Ref Expression
evls1fval.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1fval.e 𝐸 = (1o evalSub 𝑆)
evls1fval.b 𝐵 = (Base‘𝑆)
evls1val.m 𝑀 = (1o mPoly (𝑆s 𝑅))
evls1val.k 𝐾 = (Base‘𝑀)
Assertion
Ref Expression
evls1val ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Distinct variable group:   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝑄(𝑦)   𝑅(𝑦)   𝑆(𝑦)   𝐸(𝑦)   𝐾(𝑦)   𝑀(𝑦)

Proof of Theorem evls1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evls1fval.b . . . . . . . 8 𝐵 = (Base‘𝑆)
21subrgss 20481 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
32adantl 481 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
4 elpwg 4566 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
54adantl 481 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
63, 5mpbird 257 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵)
7 evls1fval.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
8 evls1fval.e . . . . . 6 𝐸 = (1o evalSub 𝑆)
97, 8, 1evls1fval 22206 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
106, 9syldan 591 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
1110fveq1d 6860 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴))
12113adant3 1132 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴))
13 1on 8446 . . . . 5 1o ∈ On
14 simp1 1136 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝑆 ∈ CRing)
15 simp2 1137 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝑅 ∈ (SubRing‘𝑆))
168fveq1i 6859 . . . . . 6 (𝐸𝑅) = ((1o evalSub 𝑆)‘𝑅)
17 evls1val.m . . . . . 6 𝑀 = (1o mPoly (𝑆s 𝑅))
18 eqid 2729 . . . . . 6 (𝑆s 𝑅) = (𝑆s 𝑅)
19 eqid 2729 . . . . . 6 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
2016, 17, 18, 19, 1evlsrhm 21995 . . . . 5 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))))
2113, 14, 15, 20mp3an2i 1468 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))))
22 evls1val.k . . . . 5 𝐾 = (Base‘𝑀)
23 eqid 2729 . . . . 5 (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o)))
2422, 23rhmf 20394 . . . 4 ((𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))) → (𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))))
2521, 24syl 17 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))))
26 simp3 1138 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝐴𝐾)
27 fvco3 6960 . . 3 (((𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)))
2825, 26, 27syl2anc 584 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)))
2925, 26ffvelcdmd 7057 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝐸𝑅)‘𝐴) ∈ (Base‘(𝑆s (𝐵m 1o))))
30 ovex 7420 . . . . 5 (𝐵m 1o) ∈ V
3119, 1pwsbas 17450 . . . . 5 ((𝑆 ∈ CRing ∧ (𝐵m 1o) ∈ V) → (𝐵m (𝐵m 1o)) = (Base‘(𝑆s (𝐵m 1o))))
3214, 30, 31sylancl 586 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐵m (𝐵m 1o)) = (Base‘(𝑆s (𝐵m 1o))))
3329, 32eleqtrrd 2831 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝐸𝑅)‘𝐴) ∈ (𝐵m (𝐵m 1o)))
34 coeq1 5821 . . . 4 (𝑥 = ((𝐸𝑅)‘𝐴) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
35 eqid 2729 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
36 fvex 6871 . . . . 5 ((𝐸𝑅)‘𝐴) ∈ V
371fvexi 6872 . . . . . 6 𝐵 ∈ V
3837mptex 7197 . . . . 5 (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V
3936, 38coex 7906 . . . 4 (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V
4034, 35, 39fvmpt 6968 . . 3 (((𝐸𝑅)‘𝐴) ∈ (𝐵m (𝐵m 1o)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4133, 40syl 17 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4212, 28, 413eqtrd 2768 1 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  𝒫 cpw 4563  {csn 4589  cmpt 5188   × cxp 5636  ccom 5642  Oncon0 6332  wf 6507  cfv 6511  (class class class)co 7387  1oc1o 8427  m cmap 8799  Basecbs 17179  s cress 17200  s cpws 17409  CRingccrg 20143   RingHom crh 20378  SubRingcsubrg 20478   mPoly cmpl 21815   evalSub ces 21979   evalSub1 ces1 22200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-evls 21981  df-evls1 22202
This theorem is referenced by:  evls1var  22225
  Copyright terms: Public domain W3C validator