MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1val Structured version   Visualization version   GIF version

Theorem evls1val 22263
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.)
Hypotheses
Ref Expression
evls1fval.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1fval.e 𝐸 = (1o evalSub 𝑆)
evls1fval.b 𝐵 = (Base‘𝑆)
evls1val.m 𝑀 = (1o mPoly (𝑆s 𝑅))
evls1val.k 𝐾 = (Base‘𝑀)
Assertion
Ref Expression
evls1val ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Distinct variable group:   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝑄(𝑦)   𝑅(𝑦)   𝑆(𝑦)   𝐸(𝑦)   𝐾(𝑦)   𝑀(𝑦)

Proof of Theorem evls1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evls1fval.b . . . . . . . 8 𝐵 = (Base‘𝑆)
21subrgss 20537 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
32adantl 481 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
4 elpwg 4583 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
54adantl 481 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
63, 5mpbird 257 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵)
7 evls1fval.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
8 evls1fval.e . . . . . 6 𝐸 = (1o evalSub 𝑆)
97, 8, 1evls1fval 22262 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
106, 9syldan 591 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
1110fveq1d 6883 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴))
12113adant3 1132 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴))
13 1on 8497 . . . . 5 1o ∈ On
14 simp1 1136 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝑆 ∈ CRing)
15 simp2 1137 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝑅 ∈ (SubRing‘𝑆))
168fveq1i 6882 . . . . . 6 (𝐸𝑅) = ((1o evalSub 𝑆)‘𝑅)
17 evls1val.m . . . . . 6 𝑀 = (1o mPoly (𝑆s 𝑅))
18 eqid 2736 . . . . . 6 (𝑆s 𝑅) = (𝑆s 𝑅)
19 eqid 2736 . . . . . 6 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
2016, 17, 18, 19, 1evlsrhm 22051 . . . . 5 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))))
2113, 14, 15, 20mp3an2i 1468 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))))
22 evls1val.k . . . . 5 𝐾 = (Base‘𝑀)
23 eqid 2736 . . . . 5 (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o)))
2422, 23rhmf 20450 . . . 4 ((𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))) → (𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))))
2521, 24syl 17 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))))
26 simp3 1138 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝐴𝐾)
27 fvco3 6983 . . 3 (((𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)))
2825, 26, 27syl2anc 584 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)))
2925, 26ffvelcdmd 7080 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝐸𝑅)‘𝐴) ∈ (Base‘(𝑆s (𝐵m 1o))))
30 ovex 7443 . . . . 5 (𝐵m 1o) ∈ V
3119, 1pwsbas 17506 . . . . 5 ((𝑆 ∈ CRing ∧ (𝐵m 1o) ∈ V) → (𝐵m (𝐵m 1o)) = (Base‘(𝑆s (𝐵m 1o))))
3214, 30, 31sylancl 586 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐵m (𝐵m 1o)) = (Base‘(𝑆s (𝐵m 1o))))
3329, 32eleqtrrd 2838 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝐸𝑅)‘𝐴) ∈ (𝐵m (𝐵m 1o)))
34 coeq1 5842 . . . 4 (𝑥 = ((𝐸𝑅)‘𝐴) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
35 eqid 2736 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
36 fvex 6894 . . . . 5 ((𝐸𝑅)‘𝐴) ∈ V
371fvexi 6895 . . . . . 6 𝐵 ∈ V
3837mptex 7220 . . . . 5 (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V
3936, 38coex 7931 . . . 4 (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V
4034, 35, 39fvmpt 6991 . . 3 (((𝐸𝑅)‘𝐴) ∈ (𝐵m (𝐵m 1o)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4133, 40syl 17 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4212, 28, 413eqtrd 2775 1 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  𝒫 cpw 4580  {csn 4606  cmpt 5206   × cxp 5657  ccom 5663  Oncon0 6357  wf 6532  cfv 6536  (class class class)co 7410  1oc1o 8478  m cmap 8845  Basecbs 17233  s cress 17256  s cpws 17465  CRingccrg 20199   RingHom crh 20434  SubRingcsubrg 20534   mPoly cmpl 21871   evalSub ces 22035   evalSub1 ces1 22256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-evls 22037  df-evls1 22258
This theorem is referenced by:  evls1var  22281
  Copyright terms: Public domain W3C validator