![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1val | Structured version Visualization version GIF version |
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.) |
Ref | Expression |
---|---|
evls1fval.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1fval.e | ⊢ 𝐸 = (1o evalSub 𝑆) |
evls1fval.b | ⊢ 𝐵 = (Base‘𝑆) |
evls1val.m | ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) |
evls1val.k | ⊢ 𝐾 = (Base‘𝑀) |
Ref | Expression |
---|---|
evls1val | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1fval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑆) | |
2 | 1 | subrgss 20552 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
3 | 2 | adantl 480 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
4 | elpwg 4600 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
5 | 4 | adantl 480 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
6 | 3, 5 | mpbird 256 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
7 | evls1fval.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
8 | evls1fval.e | . . . . . 6 ⊢ 𝐸 = (1o evalSub 𝑆) | |
9 | 7, 8, 1 | evls1fval 22307 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) |
10 | 6, 9 | syldan 589 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) |
11 | 10 | fveq1d 6895 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄‘𝐴) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴)) |
12 | 11 | 3adant3 1129 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴)) |
13 | 1on 8500 | . . . . 5 ⊢ 1o ∈ On | |
14 | simp1 1133 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝑆 ∈ CRing) | |
15 | simp2 1134 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝑅 ∈ (SubRing‘𝑆)) | |
16 | 8 | fveq1i 6894 | . . . . . 6 ⊢ (𝐸‘𝑅) = ((1o evalSub 𝑆)‘𝑅) |
17 | evls1val.m | . . . . . 6 ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) | |
18 | eqid 2726 | . . . . . 6 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
19 | eqid 2726 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 1o)) = (𝑆 ↑s (𝐵 ↑m 1o)) | |
20 | 16, 17, 18, 19, 1 | evlsrhm 22099 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
21 | 13, 14, 15, 20 | mp3an2i 1463 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
22 | evls1val.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑀) | |
23 | eqid 2726 | . . . . 5 ⊢ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) | |
24 | 22, 23 | rhmf 20463 | . . . 4 ⊢ ((𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o))) → (𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
25 | 21, 24 | syl 17 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
26 | simp3 1135 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) | |
27 | fvco3 6993 | . . 3 ⊢ (((𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴))) | |
28 | 25, 26, 27 | syl2anc 582 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴))) |
29 | 25, 26 | ffvelcdmd 7091 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝐸‘𝑅)‘𝐴) ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
30 | ovex 7449 | . . . . 5 ⊢ (𝐵 ↑m 1o) ∈ V | |
31 | 19, 1 | pwsbas 17497 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ (𝐵 ↑m 1o) ∈ V) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
32 | 14, 30, 31 | sylancl 584 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
33 | 29, 32 | eleqtrrd 2829 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝐸‘𝑅)‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o))) |
34 | coeq1 5856 | . . . 4 ⊢ (𝑥 = ((𝐸‘𝑅)‘𝐴) → (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
35 | eqid 2726 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
36 | fvex 6906 | . . . . 5 ⊢ ((𝐸‘𝑅)‘𝐴) ∈ V | |
37 | 1 | fvexi 6907 | . . . . . 6 ⊢ 𝐵 ∈ V |
38 | 37 | mptex 7232 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) ∈ V |
39 | 36, 38 | coex 7935 | . . . 4 ⊢ (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ V |
40 | 34, 35, 39 | fvmpt 7001 | . . 3 ⊢ (((𝐸‘𝑅)‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o)) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴)) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
41 | 33, 40 | syl 17 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴)) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
42 | 12, 28, 41 | 3eqtrd 2770 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3946 𝒫 cpw 4597 {csn 4623 ↦ cmpt 5228 × cxp 5672 ∘ ccom 5678 Oncon0 6368 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 1oc1o 8481 ↑m cmap 8847 Basecbs 17208 ↾s cress 17237 ↑s cpws 17456 CRingccrg 20213 RingHom crh 20447 SubRingcsubrg 20547 mPoly cmpl 21899 evalSub ces 22081 evalSub1 ces1 22301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-ofr 7683 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-sup 9478 df-oi 9546 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-fzo 13676 df-seq 14016 df-hash 14343 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-hom 17285 df-cco 17286 df-0g 17451 df-gsum 17452 df-prds 17457 df-pws 17459 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-mhm 18768 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-mulg 19058 df-subg 19113 df-ghm 19203 df-cntz 19307 df-cmn 19776 df-abl 19777 df-mgp 20114 df-rng 20132 df-ur 20161 df-srg 20166 df-ring 20214 df-cring 20215 df-rhm 20450 df-subrng 20524 df-subrg 20549 df-lmod 20834 df-lss 20905 df-lsp 20945 df-assa 21847 df-asp 21848 df-ascl 21849 df-psr 21902 df-mvr 21903 df-mpl 21904 df-evls 22083 df-evls1 22303 |
This theorem is referenced by: evls1var 22326 |
Copyright terms: Public domain | W3C validator |