![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1val | Structured version Visualization version GIF version |
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.) |
Ref | Expression |
---|---|
evls1fval.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1fval.e | ⊢ 𝐸 = (1o evalSub 𝑆) |
evls1fval.b | ⊢ 𝐵 = (Base‘𝑆) |
evls1val.m | ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) |
evls1val.k | ⊢ 𝐾 = (Base‘𝑀) |
Ref | Expression |
---|---|
evls1val | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1fval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑆) | |
2 | 1 | subrgss 20589 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
4 | elpwg 4608 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
6 | 3, 5 | mpbird 257 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
7 | evls1fval.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
8 | evls1fval.e | . . . . . 6 ⊢ 𝐸 = (1o evalSub 𝑆) | |
9 | 7, 8, 1 | evls1fval 22339 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) |
10 | 6, 9 | syldan 591 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) |
11 | 10 | fveq1d 6909 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄‘𝐴) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴)) |
12 | 11 | 3adant3 1131 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴)) |
13 | 1on 8517 | . . . . 5 ⊢ 1o ∈ On | |
14 | simp1 1135 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝑆 ∈ CRing) | |
15 | simp2 1136 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝑅 ∈ (SubRing‘𝑆)) | |
16 | 8 | fveq1i 6908 | . . . . . 6 ⊢ (𝐸‘𝑅) = ((1o evalSub 𝑆)‘𝑅) |
17 | evls1val.m | . . . . . 6 ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) | |
18 | eqid 2735 | . . . . . 6 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
19 | eqid 2735 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 1o)) = (𝑆 ↑s (𝐵 ↑m 1o)) | |
20 | 16, 17, 18, 19, 1 | evlsrhm 22130 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
21 | 13, 14, 15, 20 | mp3an2i 1465 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
22 | evls1val.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑀) | |
23 | eqid 2735 | . . . . 5 ⊢ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) | |
24 | 22, 23 | rhmf 20502 | . . . 4 ⊢ ((𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o))) → (𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
25 | 21, 24 | syl 17 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
26 | simp3 1137 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) | |
27 | fvco3 7008 | . . 3 ⊢ (((𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴))) | |
28 | 25, 26, 27 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴))) |
29 | 25, 26 | ffvelcdmd 7105 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝐸‘𝑅)‘𝐴) ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
30 | ovex 7464 | . . . . 5 ⊢ (𝐵 ↑m 1o) ∈ V | |
31 | 19, 1 | pwsbas 17534 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ (𝐵 ↑m 1o) ∈ V) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
32 | 14, 30, 31 | sylancl 586 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
33 | 29, 32 | eleqtrrd 2842 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝐸‘𝑅)‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o))) |
34 | coeq1 5871 | . . . 4 ⊢ (𝑥 = ((𝐸‘𝑅)‘𝐴) → (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
35 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
36 | fvex 6920 | . . . . 5 ⊢ ((𝐸‘𝑅)‘𝐴) ∈ V | |
37 | 1 | fvexi 6921 | . . . . . 6 ⊢ 𝐵 ∈ V |
38 | 37 | mptex 7243 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) ∈ V |
39 | 36, 38 | coex 7953 | . . . 4 ⊢ (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ V |
40 | 34, 35, 39 | fvmpt 7016 | . . 3 ⊢ (((𝐸‘𝑅)‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o)) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴)) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
41 | 33, 40 | syl 17 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴)) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
42 | 12, 28, 41 | 3eqtrd 2779 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 {csn 4631 ↦ cmpt 5231 × cxp 5687 ∘ ccom 5693 Oncon0 6386 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 1oc1o 8498 ↑m cmap 8865 Basecbs 17245 ↾s cress 17274 ↑s cpws 17493 CRingccrg 20252 RingHom crh 20486 SubRingcsubrg 20586 mPoly cmpl 21944 evalSub ces 22114 evalSub1 ces1 22333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-evls 22116 df-evls1 22335 |
This theorem is referenced by: evls1var 22358 |
Copyright terms: Public domain | W3C validator |