Step | Hyp | Ref
| Expression |
1 | | evls1fval.b |
. . . . . . . 8
β’ π΅ = (Baseβπ) |
2 | 1 | subrgss 20356 |
. . . . . . 7
β’ (π
β (SubRingβπ) β π
β π΅) |
3 | 2 | adantl 482 |
. . . . . 6
β’ ((π β CRing β§ π
β (SubRingβπ)) β π
β π΅) |
4 | | elpwg 4604 |
. . . . . . 7
β’ (π
β (SubRingβπ) β (π
β π« π΅ β π
β π΅)) |
5 | 4 | adantl 482 |
. . . . . 6
β’ ((π β CRing β§ π
β (SubRingβπ)) β (π
β π« π΅ β π
β π΅)) |
6 | 3, 5 | mpbird 256 |
. . . . 5
β’ ((π β CRing β§ π
β (SubRingβπ)) β π
β π« π΅) |
7 | | evls1fval.q |
. . . . . 6
β’ π = (π evalSub1 π
) |
8 | | evls1fval.e |
. . . . . 6
β’ πΈ = (1o evalSub π) |
9 | 7, 8, 1 | evls1fval 21829 |
. . . . 5
β’ ((π β CRing β§ π
β π« π΅) β π = ((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β (πΈβπ
))) |
10 | 6, 9 | syldan 591 |
. . . 4
β’ ((π β CRing β§ π
β (SubRingβπ)) β π = ((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β (πΈβπ
))) |
11 | 10 | fveq1d 6890 |
. . 3
β’ ((π β CRing β§ π
β (SubRingβπ)) β (πβπ΄) = (((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β (πΈβπ
))βπ΄)) |
12 | 11 | 3adant3 1132 |
. 2
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β (πβπ΄) = (((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β (πΈβπ
))βπ΄)) |
13 | | 1on 8474 |
. . . . 5
β’
1o β On |
14 | | simp1 1136 |
. . . . 5
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β π β CRing) |
15 | | simp2 1137 |
. . . . 5
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β π
β (SubRingβπ)) |
16 | 8 | fveq1i 6889 |
. . . . . 6
β’ (πΈβπ
) = ((1o evalSub π)βπ
) |
17 | | evls1val.m |
. . . . . 6
β’ π = (1o mPoly (π βΎs π
)) |
18 | | eqid 2732 |
. . . . . 6
β’ (π βΎs π
) = (π βΎs π
) |
19 | | eqid 2732 |
. . . . . 6
β’ (π βs
(π΅ βm
1o)) = (π
βs (π΅ βm
1o)) |
20 | 16, 17, 18, 19, 1 | evlsrhm 21642 |
. . . . 5
β’
((1o β On β§ π β CRing β§ π
β (SubRingβπ)) β (πΈβπ
) β (π RingHom (π βs (π΅ βm
1o)))) |
21 | 13, 14, 15, 20 | mp3an2i 1466 |
. . . 4
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β (πΈβπ
) β (π RingHom (π βs (π΅ βm
1o)))) |
22 | | evls1val.k |
. . . . 5
β’ πΎ = (Baseβπ) |
23 | | eqid 2732 |
. . . . 5
β’
(Baseβ(π
βs (π΅ βm 1o))) =
(Baseβ(π
βs (π΅ βm
1o))) |
24 | 22, 23 | rhmf 20255 |
. . . 4
β’ ((πΈβπ
) β (π RingHom (π βs (π΅ βm
1o))) β (πΈβπ
):πΎβΆ(Baseβ(π βs (π΅ βm
1o)))) |
25 | 21, 24 | syl 17 |
. . 3
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β (πΈβπ
):πΎβΆ(Baseβ(π βs (π΅ βm
1o)))) |
26 | | simp3 1138 |
. . 3
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β π΄ β πΎ) |
27 | | fvco3 6987 |
. . 3
β’ (((πΈβπ
):πΎβΆ(Baseβ(π βs (π΅ βm
1o))) β§ π΄
β πΎ) β (((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β (πΈβπ
))βπ΄) = ((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦}))))β((πΈβπ
)βπ΄))) |
28 | 25, 26, 27 | syl2anc 584 |
. 2
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β (((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β (πΈβπ
))βπ΄) = ((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦}))))β((πΈβπ
)βπ΄))) |
29 | 25, 26 | ffvelcdmd 7084 |
. . . 4
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β ((πΈβπ
)βπ΄) β (Baseβ(π βs (π΅ βm
1o)))) |
30 | | ovex 7438 |
. . . . 5
β’ (π΅ βm
1o) β V |
31 | 19, 1 | pwsbas 17429 |
. . . . 5
β’ ((π β CRing β§ (π΅ βm
1o) β V) β (π΅ βm (π΅ βm 1o)) =
(Baseβ(π
βs (π΅ βm
1o)))) |
32 | 14, 30, 31 | sylancl 586 |
. . . 4
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β (π΅ βm (π΅ βm 1o)) =
(Baseβ(π
βs (π΅ βm
1o)))) |
33 | 29, 32 | eleqtrrd 2836 |
. . 3
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β ((πΈβπ
)βπ΄) β (π΅ βm (π΅ βm
1o))) |
34 | | coeq1 5855 |
. . . 4
β’ (π₯ = ((πΈβπ
)βπ΄) β (π₯ β (π¦ β π΅ β¦ (1o Γ {π¦}))) = (((πΈβπ
)βπ΄) β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
35 | | eqid 2732 |
. . . 4
β’ (π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) = (π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
36 | | fvex 6901 |
. . . . 5
β’ ((πΈβπ
)βπ΄) β V |
37 | 1 | fvexi 6902 |
. . . . . 6
β’ π΅ β V |
38 | 37 | mptex 7221 |
. . . . 5
β’ (π¦ β π΅ β¦ (1o Γ {π¦})) β V |
39 | 36, 38 | coex 7917 |
. . . 4
β’ (((πΈβπ
)βπ΄) β (π¦ β π΅ β¦ (1o Γ {π¦}))) β V |
40 | 34, 35, 39 | fvmpt 6995 |
. . 3
β’ (((πΈβπ
)βπ΄) β (π΅ βm (π΅ βm 1o)) β
((π₯ β (π΅ βm (π΅ βm
1o)) β¦ (π₯
β (π¦ β π΅ β¦ (1o Γ
{π¦}))))β((πΈβπ
)βπ΄)) = (((πΈβπ
)βπ΄) β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
41 | 33, 40 | syl 17 |
. 2
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β ((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦}))))β((πΈβπ
)βπ΄)) = (((πΈβπ
)βπ΄) β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
42 | 12, 28, 41 | 3eqtrd 2776 |
1
β’ ((π β CRing β§ π
β (SubRingβπ) β§ π΄ β πΎ) β (πβπ΄) = (((πΈβπ
)βπ΄) β (π¦ β π΅ β¦ (1o Γ {π¦})))) |