| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1val | Structured version Visualization version GIF version | ||
| Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.) |
| Ref | Expression |
|---|---|
| evls1fval.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1fval.e | ⊢ 𝐸 = (1o evalSub 𝑆) |
| evls1fval.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1val.m | ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) |
| evls1val.k | ⊢ 𝐾 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| evls1val | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1fval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | 1 | subrgss 20537 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
| 4 | elpwg 4583 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
| 6 | 3, 5 | mpbird 257 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
| 7 | evls1fval.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 8 | evls1fval.e | . . . . . 6 ⊢ 𝐸 = (1o evalSub 𝑆) | |
| 9 | 7, 8, 1 | evls1fval 22262 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) |
| 10 | 6, 9 | syldan 591 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) |
| 11 | 10 | fveq1d 6883 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄‘𝐴) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴)) |
| 12 | 11 | 3adant3 1132 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴)) |
| 13 | 1on 8497 | . . . . 5 ⊢ 1o ∈ On | |
| 14 | simp1 1136 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝑆 ∈ CRing) | |
| 15 | simp2 1137 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝑅 ∈ (SubRing‘𝑆)) | |
| 16 | 8 | fveq1i 6882 | . . . . . 6 ⊢ (𝐸‘𝑅) = ((1o evalSub 𝑆)‘𝑅) |
| 17 | evls1val.m | . . . . . 6 ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) | |
| 18 | eqid 2736 | . . . . . 6 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
| 19 | eqid 2736 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 1o)) = (𝑆 ↑s (𝐵 ↑m 1o)) | |
| 20 | 16, 17, 18, 19, 1 | evlsrhm 22051 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 21 | 13, 14, 15, 20 | mp3an2i 1468 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 22 | evls1val.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑀) | |
| 23 | eqid 2736 | . . . . 5 ⊢ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) | |
| 24 | 22, 23 | rhmf 20450 | . . . 4 ⊢ ((𝐸‘𝑅) ∈ (𝑀 RingHom (𝑆 ↑s (𝐵 ↑m 1o))) → (𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
| 25 | 21, 24 | syl 17 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
| 26 | simp3 1138 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) | |
| 27 | fvco3 6983 | . . 3 ⊢ (((𝐸‘𝑅):𝐾⟶(Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴))) | |
| 28 | 25, 26, 27 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴))) |
| 29 | 25, 26 | ffvelcdmd 7080 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝐸‘𝑅)‘𝐴) ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
| 30 | ovex 7443 | . . . . 5 ⊢ (𝐵 ↑m 1o) ∈ V | |
| 31 | 19, 1 | pwsbas 17506 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ (𝐵 ↑m 1o) ∈ V) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
| 32 | 14, 30, 31 | sylancl 586 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) |
| 33 | 29, 32 | eleqtrrd 2838 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝐸‘𝑅)‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o))) |
| 34 | coeq1 5842 | . . . 4 ⊢ (𝑥 = ((𝐸‘𝑅)‘𝐴) → (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
| 35 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
| 36 | fvex 6894 | . . . . 5 ⊢ ((𝐸‘𝑅)‘𝐴) ∈ V | |
| 37 | 1 | fvexi 6895 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 38 | 37 | mptex 7220 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) ∈ V |
| 39 | 36, 38 | coex 7931 | . . . 4 ⊢ (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ V |
| 40 | 34, 35, 39 | fvmpt 6991 | . . 3 ⊢ (((𝐸‘𝑅)‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o)) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴)) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 41 | 33, 40 | syl 17 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐸‘𝑅)‘𝐴)) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 42 | 12, 28, 41 | 3eqtrd 2775 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 {csn 4606 ↦ cmpt 5206 × cxp 5657 ∘ ccom 5663 Oncon0 6357 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 1oc1o 8478 ↑m cmap 8845 Basecbs 17233 ↾s cress 17256 ↑s cpws 17465 CRingccrg 20199 RingHom crh 20434 SubRingcsubrg 20534 mPoly cmpl 21871 evalSub ces 22035 evalSub1 ces1 22256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-assa 21818 df-asp 21819 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-evls 22037 df-evls1 22258 |
| This theorem is referenced by: evls1var 22281 |
| Copyright terms: Public domain | W3C validator |