MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1val Structured version   Visualization version   GIF version

Theorem evls1val 20483
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.)
Hypotheses
Ref Expression
evls1fval.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1fval.e 𝐸 = (1o evalSub 𝑆)
evls1fval.b 𝐵 = (Base‘𝑆)
evls1val.m 𝑀 = (1o mPoly (𝑆s 𝑅))
evls1val.k 𝐾 = (Base‘𝑀)
Assertion
Ref Expression
evls1val ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Distinct variable group:   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝑄(𝑦)   𝑅(𝑦)   𝑆(𝑦)   𝐸(𝑦)   𝐾(𝑦)   𝑀(𝑦)

Proof of Theorem evls1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evls1fval.b . . . . . . . 8 𝐵 = (Base‘𝑆)
21subrgss 19536 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
32adantl 484 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
4 elpwg 4542 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
54adantl 484 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
63, 5mpbird 259 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵)
7 evls1fval.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
8 evls1fval.e . . . . . 6 𝐸 = (1o evalSub 𝑆)
97, 8, 1evls1fval 20482 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
106, 9syldan 593 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
1110fveq1d 6672 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴))
12113adant3 1128 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴))
13 1on 8109 . . . . 5 1o ∈ On
14 simp1 1132 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝑆 ∈ CRing)
15 simp2 1133 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝑅 ∈ (SubRing‘𝑆))
168fveq1i 6671 . . . . . 6 (𝐸𝑅) = ((1o evalSub 𝑆)‘𝑅)
17 evls1val.m . . . . . 6 𝑀 = (1o mPoly (𝑆s 𝑅))
18 eqid 2821 . . . . . 6 (𝑆s 𝑅) = (𝑆s 𝑅)
19 eqid 2821 . . . . . 6 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
2016, 17, 18, 19, 1evlsrhm 20301 . . . . 5 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))))
2113, 14, 15, 20mp3an2i 1462 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))))
22 evls1val.k . . . . 5 𝐾 = (Base‘𝑀)
23 eqid 2821 . . . . 5 (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o)))
2422, 23rhmf 19478 . . . 4 ((𝐸𝑅) ∈ (𝑀 RingHom (𝑆s (𝐵m 1o))) → (𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))))
2521, 24syl 17 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))))
26 simp3 1134 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → 𝐴𝐾)
27 fvco3 6760 . . 3 (((𝐸𝑅):𝐾⟶(Base‘(𝑆s (𝐵m 1o))) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)))
2825, 26, 27syl2anc 586 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅))‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)))
2925, 26ffvelrnd 6852 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝐸𝑅)‘𝐴) ∈ (Base‘(𝑆s (𝐵m 1o))))
30 ovex 7189 . . . . 5 (𝐵m 1o) ∈ V
3119, 1pwsbas 16760 . . . . 5 ((𝑆 ∈ CRing ∧ (𝐵m 1o) ∈ V) → (𝐵m (𝐵m 1o)) = (Base‘(𝑆s (𝐵m 1o))))
3214, 30, 31sylancl 588 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝐵m (𝐵m 1o)) = (Base‘(𝑆s (𝐵m 1o))))
3329, 32eleqtrrd 2916 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝐸𝑅)‘𝐴) ∈ (𝐵m (𝐵m 1o)))
34 coeq1 5728 . . . 4 (𝑥 = ((𝐸𝑅)‘𝐴) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
35 eqid 2821 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
36 fvex 6683 . . . . 5 ((𝐸𝑅)‘𝐴) ∈ V
371fvexi 6684 . . . . . 6 𝐵 ∈ V
3837mptex 6986 . . . . 5 (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V
3936, 38coex 7635 . . . 4 (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V
4034, 35, 39fvmpt 6768 . . 3 (((𝐸𝑅)‘𝐴) ∈ (𝐵m (𝐵m 1o)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4133, 40syl 17 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐸𝑅)‘𝐴)) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4212, 28, 413eqtrd 2860 1 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴𝐾) → (𝑄𝐴) = (((𝐸𝑅)‘𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936  𝒫 cpw 4539  {csn 4567  cmpt 5146   × cxp 5553  ccom 5559  Oncon0 6191  wf 6351  cfv 6355  (class class class)co 7156  1oc1o 8095  m cmap 8406  Basecbs 16483  s cress 16484  s cpws 16720  CRingccrg 19298   RingHom crh 19464  SubRingcsubrg 19531   mPoly cmpl 20133   evalSub ces 20284   evalSub1 ces1 20476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-rnghom 19467  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-evls 20286  df-evls1 20478
This theorem is referenced by:  evls1var  20501
  Copyright terms: Public domain W3C validator