Step | Hyp | Ref
| Expression |
1 | | evls1rhm.b |
. . . . . 6
β’ π΅ = (Baseβπ) |
2 | 1 | subrgss 20320 |
. . . . 5
β’ (π
β (SubRingβπ) β π
β π΅) |
3 | 2 | adantl 483 |
. . . 4
β’ ((π β CRing β§ π
β (SubRingβπ)) β π
β π΅) |
4 | | elpwg 4606 |
. . . . 5
β’ (π
β (SubRingβπ) β (π
β π« π΅ β π
β π΅)) |
5 | 4 | adantl 483 |
. . . 4
β’ ((π β CRing β§ π
β (SubRingβπ)) β (π
β π« π΅ β π
β π΅)) |
6 | 3, 5 | mpbird 257 |
. . 3
β’ ((π β CRing β§ π
β (SubRingβπ)) β π
β π« π΅) |
7 | | evls1rhm.q |
. . . 4
β’ π = (π evalSub1 π
) |
8 | | eqid 2733 |
. . . 4
β’
(1o evalSub π) = (1o evalSub π) |
9 | 7, 8, 1 | evls1fval 21838 |
. . 3
β’ ((π β CRing β§ π
β π« π΅) β π = ((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β ((1o
evalSub π)βπ
))) |
10 | 6, 9 | syldan 592 |
. 2
β’ ((π β CRing β§ π
β (SubRingβπ)) β π = ((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β ((1o
evalSub π)βπ
))) |
11 | | evls1rhm.t |
. . . 4
β’ π = (π βs π΅) |
12 | | eqid 2733 |
. . . 4
β’ (π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) = (π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
13 | 1, 11, 12 | evls1rhmlem 21840 |
. . 3
β’ (π β CRing β (π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β ((π βs (π΅ βm
1o)) RingHom π)) |
14 | | 1on 8478 |
. . . . 5
β’
1o β On |
15 | | eqid 2733 |
. . . . . 6
β’
((1o evalSub π)βπ
) = ((1o evalSub π)βπ
) |
16 | | eqid 2733 |
. . . . . 6
β’
(1o mPoly π) = (1o mPoly π) |
17 | | evls1rhm.u |
. . . . . 6
β’ π = (π βΎs π
) |
18 | | eqid 2733 |
. . . . . 6
β’ (π βs
(π΅ βm
1o)) = (π
βs (π΅ βm
1o)) |
19 | 15, 16, 17, 18, 1 | evlsrhm 21651 |
. . . . 5
β’
((1o β On β§ π β CRing β§ π
β (SubRingβπ)) β ((1o evalSub π)βπ
) β ((1o mPoly π) RingHom (π βs (π΅ βm
1o)))) |
20 | 14, 19 | mp3an1 1449 |
. . . 4
β’ ((π β CRing β§ π
β (SubRingβπ)) β ((1o
evalSub π)βπ
) β ((1o mPoly
π) RingHom (π βs
(π΅ βm
1o)))) |
21 | | eqidd 2734 |
. . . . 5
β’ ((π β CRing β§ π
β (SubRingβπ)) β (Baseβπ) = (Baseβπ)) |
22 | | eqidd 2734 |
. . . . 5
β’ ((π β CRing β§ π
β (SubRingβπ)) β (Baseβ(π βs
(π΅ βm
1o))) = (Baseβ(π βs (π΅ βm
1o)))) |
23 | | evls1rhm.w |
. . . . . . 7
β’ π = (Poly1βπ) |
24 | | eqid 2733 |
. . . . . . 7
β’
(PwSer1βπ) = (PwSer1βπ) |
25 | | eqid 2733 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
26 | 23, 24, 25 | ply1bas 21719 |
. . . . . 6
β’
(Baseβπ) =
(Baseβ(1o mPoly π)) |
27 | 26 | a1i 11 |
. . . . 5
β’ ((π β CRing β§ π
β (SubRingβπ)) β (Baseβπ) = (Baseβ(1o
mPoly π))) |
28 | | eqid 2733 |
. . . . . . . 8
β’
(+gβπ) = (+gβπ) |
29 | 23, 16, 28 | ply1plusg 21747 |
. . . . . . 7
β’
(+gβπ) = (+gβ(1o
mPoly π)) |
30 | 29 | a1i 11 |
. . . . . 6
β’ ((π β CRing β§ π
β (SubRingβπ)) β
(+gβπ) =
(+gβ(1o mPoly π))) |
31 | 30 | oveqdr 7437 |
. . . . 5
β’ (((π β CRing β§ π
β (SubRingβπ)) β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (π₯(+gβπ)π¦) = (π₯(+gβ(1o mPoly
π))π¦)) |
32 | | eqidd 2734 |
. . . . 5
β’ (((π β CRing β§ π
β (SubRingβπ)) β§ (π₯ β (Baseβ(π βs (π΅ βm
1o))) β§ π¦
β (Baseβ(π
βs (π΅ βm 1o)))))
β (π₯(+gβ(π βs (π΅ βm
1o)))π¦) = (π₯(+gβ(π βs
(π΅ βm
1o)))π¦)) |
33 | | eqid 2733 |
. . . . . . . 8
β’
(.rβπ) = (.rβπ) |
34 | 23, 16, 33 | ply1mulr 21749 |
. . . . . . 7
β’
(.rβπ) = (.rβ(1o
mPoly π)) |
35 | 34 | a1i 11 |
. . . . . 6
β’ ((π β CRing β§ π
β (SubRingβπ)) β
(.rβπ) =
(.rβ(1o mPoly π))) |
36 | 35 | oveqdr 7437 |
. . . . 5
β’ (((π β CRing β§ π
β (SubRingβπ)) β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (π₯(.rβπ)π¦) = (π₯(.rβ(1o mPoly
π))π¦)) |
37 | | eqidd 2734 |
. . . . 5
β’ (((π β CRing β§ π
β (SubRingβπ)) β§ (π₯ β (Baseβ(π βs (π΅ βm
1o))) β§ π¦
β (Baseβ(π
βs (π΅ βm 1o)))))
β (π₯(.rβ(π βs (π΅ βm
1o)))π¦) = (π₯(.rβ(π βs
(π΅ βm
1o)))π¦)) |
38 | 21, 22, 27, 22, 31, 32, 36, 37 | rhmpropd 20356 |
. . . 4
β’ ((π β CRing β§ π
β (SubRingβπ)) β (π RingHom (π βs (π΅ βm
1o))) = ((1o mPoly π) RingHom (π βs (π΅ βm
1o)))) |
39 | 20, 38 | eleqtrrd 2837 |
. . 3
β’ ((π β CRing β§ π
β (SubRingβπ)) β ((1o
evalSub π)βπ
) β (π RingHom (π βs (π΅ βm
1o)))) |
40 | | rhmco 20276 |
. . 3
β’ (((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β ((π βs (π΅ βm
1o)) RingHom π)
β§ ((1o evalSub π)βπ
) β (π RingHom (π βs (π΅ βm
1o)))) β ((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β ((1o
evalSub π)βπ
)) β (π RingHom π)) |
41 | 13, 39, 40 | syl2an2r 684 |
. 2
β’ ((π β CRing β§ π
β (SubRingβπ)) β ((π₯ β (π΅ βm (π΅ βm 1o)) β¦
(π₯ β (π¦ β π΅ β¦ (1o Γ {π¦})))) β ((1o
evalSub π)βπ
)) β (π RingHom π)) |
42 | 10, 41 | eqeltrd 2834 |
1
β’ ((π β CRing β§ π
β (SubRingβπ)) β π β (π RingHom π)) |