| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1rhm | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.) |
| Ref | Expression |
|---|---|
| evls1rhm.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1rhm.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1rhm.t | ⊢ 𝑇 = (𝑆 ↑s 𝐵) |
| evls1rhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1rhm.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| Ref | Expression |
|---|---|
| evls1rhm | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1rhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | 1 | subrgss 20457 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
| 4 | elpwg 4554 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
| 6 | 3, 5 | mpbird 257 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
| 7 | evls1rhm.q | . . . 4 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 8 | eqid 2729 | . . . 4 ⊢ (1o evalSub 𝑆) = (1o evalSub 𝑆) | |
| 9 | 7, 8, 1 | evls1fval 22204 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))) |
| 10 | 6, 9 | syldan 591 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))) |
| 11 | evls1rhm.t | . . . 4 ⊢ 𝑇 = (𝑆 ↑s 𝐵) | |
| 12 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
| 13 | 1, 11, 12 | evls1rhmlem 22206 | . . 3 ⊢ (𝑆 ∈ CRing → (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
| 14 | 1on 8400 | . . . . 5 ⊢ 1o ∈ On | |
| 15 | eqid 2729 | . . . . . 6 ⊢ ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ (1o mPoly 𝑈) = (1o mPoly 𝑈) | |
| 17 | evls1rhm.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 18 | eqid 2729 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 1o)) = (𝑆 ↑s (𝐵 ↑m 1o)) | |
| 19 | 15, 16, 17, 18, 1 | evlsrhm 21993 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 20 | 14, 19 | mp3an1 1450 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 21 | eqidd 2730 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊)) | |
| 22 | eqidd 2730 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) | |
| 23 | evls1rhm.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 25 | 23, 24 | ply1bas 22077 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘(1o mPoly 𝑈)) |
| 26 | 25 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1o mPoly 𝑈))) |
| 27 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 28 | 23, 16, 27 | ply1plusg 22106 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘(1o mPoly 𝑈)) |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g‘𝑊) = (+g‘(1o mPoly 𝑈))) |
| 30 | 29 | oveqdr 7377 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘(1o mPoly 𝑈))𝑦)) |
| 31 | eqidd 2730 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))))) → (𝑥(+g‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦) = (𝑥(+g‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦)) | |
| 32 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 33 | 23, 16, 32 | ply1mulr 22108 | . . . . . . 7 ⊢ (.r‘𝑊) = (.r‘(1o mPoly 𝑈)) |
| 34 | 33 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r‘𝑊) = (.r‘(1o mPoly 𝑈))) |
| 35 | 34 | oveqdr 7377 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)𝑦) = (𝑥(.r‘(1o mPoly 𝑈))𝑦)) |
| 36 | eqidd 2730 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))))) → (𝑥(.r‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦) = (𝑥(.r‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦)) | |
| 37 | 21, 22, 26, 22, 30, 31, 35, 36 | rhmpropd 20494 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o))) = ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 38 | 20, 37 | eleqtrrd 2831 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 39 | rhmco 20386 | . . 3 ⊢ (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑m 1o)) RingHom 𝑇) ∧ ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) | |
| 40 | 13, 38, 39 | syl2an2r 685 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) |
| 41 | 10, 40 | eqeltrd 2828 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 𝒫 cpw 4551 {csn 4577 ↦ cmpt 5173 × cxp 5617 ∘ ccom 5623 Oncon0 6307 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 ↑m cmap 8753 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 .rcmulr 17162 ↑s cpws 17350 CRingccrg 20119 RingHom crh 20354 SubRingcsubrg 20454 mPoly cmpl 21813 evalSub ces 21977 Poly1cpl1 22059 evalSub1 ces1 22198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-lsp 20875 df-assa 21760 df-asp 21761 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-evls 21979 df-psr1 22062 df-ply1 22064 df-evls1 22200 |
| This theorem is referenced by: evls1gsumadd 22209 evls1gsummul 22210 evls1pw 22211 evls1expd 22252 evls1fpws 22254 ressply1evl 22255 evls1fn 33496 evls1dm 33497 evls1fvf 33498 elirng 33659 irngnzply1lem 33663 irngnzply1 33664 |
| Copyright terms: Public domain | W3C validator |