| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1rhm | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.) |
| Ref | Expression |
|---|---|
| evls1rhm.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1rhm.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1rhm.t | ⊢ 𝑇 = (𝑆 ↑s 𝐵) |
| evls1rhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1rhm.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| Ref | Expression |
|---|---|
| evls1rhm | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1rhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | 1 | subrgss 20487 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
| 4 | elpwg 4550 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
| 6 | 3, 5 | mpbird 257 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
| 7 | evls1rhm.q | . . . 4 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 8 | eqid 2731 | . . . 4 ⊢ (1o evalSub 𝑆) = (1o evalSub 𝑆) | |
| 9 | 7, 8, 1 | evls1fval 22234 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))) |
| 10 | 6, 9 | syldan 591 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))) |
| 11 | evls1rhm.t | . . . 4 ⊢ 𝑇 = (𝑆 ↑s 𝐵) | |
| 12 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
| 13 | 1, 11, 12 | evls1rhmlem 22236 | . . 3 ⊢ (𝑆 ∈ CRing → (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
| 14 | 1on 8397 | . . . . 5 ⊢ 1o ∈ On | |
| 15 | eqid 2731 | . . . . . 6 ⊢ ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) | |
| 16 | eqid 2731 | . . . . . 6 ⊢ (1o mPoly 𝑈) = (1o mPoly 𝑈) | |
| 17 | evls1rhm.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 18 | eqid 2731 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 1o)) = (𝑆 ↑s (𝐵 ↑m 1o)) | |
| 19 | 15, 16, 17, 18, 1 | evlsrhm 22023 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 20 | 14, 19 | mp3an1 1450 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 21 | eqidd 2732 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊)) | |
| 22 | eqidd 2732 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) | |
| 23 | evls1rhm.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 24 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 25 | 23, 24 | ply1bas 22107 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘(1o mPoly 𝑈)) |
| 26 | 25 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1o mPoly 𝑈))) |
| 27 | eqid 2731 | . . . . . . . 8 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 28 | 23, 16, 27 | ply1plusg 22136 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘(1o mPoly 𝑈)) |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g‘𝑊) = (+g‘(1o mPoly 𝑈))) |
| 30 | 29 | oveqdr 7374 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘(1o mPoly 𝑈))𝑦)) |
| 31 | eqidd 2732 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))))) → (𝑥(+g‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦) = (𝑥(+g‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦)) | |
| 32 | eqid 2731 | . . . . . . . 8 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 33 | 23, 16, 32 | ply1mulr 22138 | . . . . . . 7 ⊢ (.r‘𝑊) = (.r‘(1o mPoly 𝑈)) |
| 34 | 33 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r‘𝑊) = (.r‘(1o mPoly 𝑈))) |
| 35 | 34 | oveqdr 7374 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)𝑦) = (𝑥(.r‘(1o mPoly 𝑈))𝑦)) |
| 36 | eqidd 2732 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))))) → (𝑥(.r‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦) = (𝑥(.r‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦)) | |
| 37 | 21, 22, 26, 22, 30, 31, 35, 36 | rhmpropd 20524 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o))) = ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 38 | 20, 37 | eleqtrrd 2834 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 39 | rhmco 20416 | . . 3 ⊢ (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑m 1o)) RingHom 𝑇) ∧ ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) | |
| 40 | 13, 38, 39 | syl2an2r 685 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) |
| 41 | 10, 40 | eqeltrd 2831 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 {csn 4573 ↦ cmpt 5170 × cxp 5612 ∘ ccom 5618 Oncon0 6306 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 .rcmulr 17162 ↑s cpws 17350 CRingccrg 20152 RingHom crh 20387 SubRingcsubrg 20484 mPoly cmpl 21843 evalSub ces 22007 Poly1cpl1 22089 evalSub1 ces1 22228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-lsp 20905 df-assa 21790 df-asp 21791 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-evls 22009 df-psr1 22092 df-ply1 22094 df-evls1 22230 |
| This theorem is referenced by: evls1gsumadd 22239 evls1gsummul 22240 evls1pw 22241 evls1expd 22282 evls1fpws 22284 ressply1evl 22285 evls1fn 33523 evls1dm 33524 evls1fvf 33525 elirng 33699 irngnzply1lem 33703 irngnzply1 33704 |
| Copyright terms: Public domain | W3C validator |