MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1rhm Structured version   Visualization version   GIF version

Theorem evls1rhm 22242
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evls1rhm.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1rhm.b 𝐵 = (Base‘𝑆)
evls1rhm.t 𝑇 = (𝑆s 𝐵)
evls1rhm.u 𝑈 = (𝑆s 𝑅)
evls1rhm.w 𝑊 = (Poly1𝑈)
Assertion
Ref Expression
evls1rhm ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇))

Proof of Theorem evls1rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1rhm.b . . . . . 6 𝐵 = (Base‘𝑆)
21subrgss 20492 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
32adantl 481 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
4 elpwg 4562 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
54adantl 481 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
63, 5mpbird 257 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵)
7 evls1rhm.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
8 eqid 2729 . . . 4 (1o evalSub 𝑆) = (1o evalSub 𝑆)
97, 8, 1evls1fval 22239 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
106, 9syldan 591 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
11 evls1rhm.t . . . 4 𝑇 = (𝑆s 𝐵)
12 eqid 2729 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
131, 11, 12evls1rhmlem 22241 . . 3 (𝑆 ∈ CRing → (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆s (𝐵m 1o)) RingHom 𝑇))
14 1on 8423 . . . . 5 1o ∈ On
15 eqid 2729 . . . . . 6 ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅)
16 eqid 2729 . . . . . 6 (1o mPoly 𝑈) = (1o mPoly 𝑈)
17 evls1rhm.u . . . . . 6 𝑈 = (𝑆s 𝑅)
18 eqid 2729 . . . . . 6 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
1915, 16, 17, 18, 1evlsrhm 22028 . . . . 5 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
2014, 19mp3an1 1450 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
21 eqidd 2730 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊))
22 eqidd 2730 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o))))
23 evls1rhm.w . . . . . . 7 𝑊 = (Poly1𝑈)
24 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2523, 24ply1bas 22112 . . . . . 6 (Base‘𝑊) = (Base‘(1o mPoly 𝑈))
2625a1i 11 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1o mPoly 𝑈)))
27 eqid 2729 . . . . . . . 8 (+g𝑊) = (+g𝑊)
2823, 16, 27ply1plusg 22141 . . . . . . 7 (+g𝑊) = (+g‘(1o mPoly 𝑈))
2928a1i 11 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g𝑊) = (+g‘(1o mPoly 𝑈)))
3029oveqdr 7397 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g‘(1o mPoly 𝑈))𝑦))
31 eqidd 2730 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆s (𝐵m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆s (𝐵m 1o))))) → (𝑥(+g‘(𝑆s (𝐵m 1o)))𝑦) = (𝑥(+g‘(𝑆s (𝐵m 1o)))𝑦))
32 eqid 2729 . . . . . . . 8 (.r𝑊) = (.r𝑊)
3323, 16, 32ply1mulr 22143 . . . . . . 7 (.r𝑊) = (.r‘(1o mPoly 𝑈))
3433a1i 11 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r𝑊) = (.r‘(1o mPoly 𝑈)))
3534oveqdr 7397 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑥(.r‘(1o mPoly 𝑈))𝑦))
36 eqidd 2730 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆s (𝐵m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆s (𝐵m 1o))))) → (𝑥(.r‘(𝑆s (𝐵m 1o)))𝑦) = (𝑥(.r‘(𝑆s (𝐵m 1o)))𝑦))
3721, 22, 26, 22, 30, 31, 35, 36rhmpropd 20529 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆s (𝐵m 1o))) = ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
3820, 37eleqtrrd 2831 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆s (𝐵m 1o))))
39 rhmco 20421 . . 3 (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆s (𝐵m 1o)) RingHom 𝑇) ∧ ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆s (𝐵m 1o)))) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇))
4013, 38, 39syl2an2r 685 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇))
4110, 40eqeltrd 2828 1 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559  {csn 4585  cmpt 5183   × cxp 5629  ccom 5635  Oncon0 6320  cfv 6499  (class class class)co 7369  1oc1o 8404  m cmap 8776  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  s cpws 17385  CRingccrg 20154   RingHom crh 20389  SubRingcsubrg 20489   mPoly cmpl 21848   evalSub ces 22012  Poly1cpl1 22094   evalSub1 ces1 22233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-psr1 22097  df-ply1 22099  df-evls1 22235
This theorem is referenced by:  evls1gsumadd  22244  evls1gsummul  22245  evls1pw  22246  evls1expd  22287  evls1fpws  22289  ressply1evl  22290  evls1fn  33522  evls1dm  33523  evls1fvf  33524  elirng  33674  irngnzply1lem  33678  irngnzply1  33679
  Copyright terms: Public domain W3C validator