MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1rhm Structured version   Visualization version   GIF version

Theorem evls1rhm 22237
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evls1rhm.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1rhm.b 𝐵 = (Base‘𝑆)
evls1rhm.t 𝑇 = (𝑆s 𝐵)
evls1rhm.u 𝑈 = (𝑆s 𝑅)
evls1rhm.w 𝑊 = (Poly1𝑈)
Assertion
Ref Expression
evls1rhm ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇))

Proof of Theorem evls1rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1rhm.b . . . . . 6 𝐵 = (Base‘𝑆)
21subrgss 20487 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
32adantl 481 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
4 elpwg 4550 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
54adantl 481 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
63, 5mpbird 257 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵)
7 evls1rhm.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
8 eqid 2731 . . . 4 (1o evalSub 𝑆) = (1o evalSub 𝑆)
97, 8, 1evls1fval 22234 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
106, 9syldan 591 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
11 evls1rhm.t . . . 4 𝑇 = (𝑆s 𝐵)
12 eqid 2731 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
131, 11, 12evls1rhmlem 22236 . . 3 (𝑆 ∈ CRing → (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆s (𝐵m 1o)) RingHom 𝑇))
14 1on 8397 . . . . 5 1o ∈ On
15 eqid 2731 . . . . . 6 ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅)
16 eqid 2731 . . . . . 6 (1o mPoly 𝑈) = (1o mPoly 𝑈)
17 evls1rhm.u . . . . . 6 𝑈 = (𝑆s 𝑅)
18 eqid 2731 . . . . . 6 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
1915, 16, 17, 18, 1evlsrhm 22023 . . . . 5 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
2014, 19mp3an1 1450 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
21 eqidd 2732 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊))
22 eqidd 2732 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o))))
23 evls1rhm.w . . . . . . 7 𝑊 = (Poly1𝑈)
24 eqid 2731 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2523, 24ply1bas 22107 . . . . . 6 (Base‘𝑊) = (Base‘(1o mPoly 𝑈))
2625a1i 11 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1o mPoly 𝑈)))
27 eqid 2731 . . . . . . . 8 (+g𝑊) = (+g𝑊)
2823, 16, 27ply1plusg 22136 . . . . . . 7 (+g𝑊) = (+g‘(1o mPoly 𝑈))
2928a1i 11 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g𝑊) = (+g‘(1o mPoly 𝑈)))
3029oveqdr 7374 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g‘(1o mPoly 𝑈))𝑦))
31 eqidd 2732 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆s (𝐵m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆s (𝐵m 1o))))) → (𝑥(+g‘(𝑆s (𝐵m 1o)))𝑦) = (𝑥(+g‘(𝑆s (𝐵m 1o)))𝑦))
32 eqid 2731 . . . . . . . 8 (.r𝑊) = (.r𝑊)
3323, 16, 32ply1mulr 22138 . . . . . . 7 (.r𝑊) = (.r‘(1o mPoly 𝑈))
3433a1i 11 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r𝑊) = (.r‘(1o mPoly 𝑈)))
3534oveqdr 7374 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑥(.r‘(1o mPoly 𝑈))𝑦))
36 eqidd 2732 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆s (𝐵m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆s (𝐵m 1o))))) → (𝑥(.r‘(𝑆s (𝐵m 1o)))𝑦) = (𝑥(.r‘(𝑆s (𝐵m 1o)))𝑦))
3721, 22, 26, 22, 30, 31, 35, 36rhmpropd 20524 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆s (𝐵m 1o))) = ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
3820, 37eleqtrrd 2834 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆s (𝐵m 1o))))
39 rhmco 20416 . . 3 (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆s (𝐵m 1o)) RingHom 𝑇) ∧ ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆s (𝐵m 1o)))) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇))
4013, 38, 39syl2an2r 685 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇))
4110, 40eqeltrd 2831 1 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897  𝒫 cpw 4547  {csn 4573  cmpt 5170   × cxp 5612  ccom 5618  Oncon0 6306  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  s cpws 17350  CRingccrg 20152   RingHom crh 20387  SubRingcsubrg 20484   mPoly cmpl 21843   evalSub ces 22007  Poly1cpl1 22089   evalSub1 ces1 22228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-psr1 22092  df-ply1 22094  df-evls1 22230
This theorem is referenced by:  evls1gsumadd  22239  evls1gsummul  22240  evls1pw  22241  evls1expd  22282  evls1fpws  22284  ressply1evl  22285  evls1fn  33523  evls1dm  33524  evls1fvf  33525  elirng  33699  irngnzply1lem  33703  irngnzply1  33704
  Copyright terms: Public domain W3C validator