| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1rhm | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.) |
| Ref | Expression |
|---|---|
| evls1rhm.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1rhm.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1rhm.t | ⊢ 𝑇 = (𝑆 ↑s 𝐵) |
| evls1rhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1rhm.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| Ref | Expression |
|---|---|
| evls1rhm | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1rhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | 1 | subrgss 20481 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
| 4 | elpwg 4566 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
| 6 | 3, 5 | mpbird 257 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
| 7 | evls1rhm.q | . . . 4 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 8 | eqid 2729 | . . . 4 ⊢ (1o evalSub 𝑆) = (1o evalSub 𝑆) | |
| 9 | 7, 8, 1 | evls1fval 22206 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))) |
| 10 | 6, 9 | syldan 591 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))) |
| 11 | evls1rhm.t | . . . 4 ⊢ 𝑇 = (𝑆 ↑s 𝐵) | |
| 12 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
| 13 | 1, 11, 12 | evls1rhmlem 22208 | . . 3 ⊢ (𝑆 ∈ CRing → (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
| 14 | 1on 8446 | . . . . 5 ⊢ 1o ∈ On | |
| 15 | eqid 2729 | . . . . . 6 ⊢ ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ (1o mPoly 𝑈) = (1o mPoly 𝑈) | |
| 17 | evls1rhm.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 18 | eqid 2729 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 1o)) = (𝑆 ↑s (𝐵 ↑m 1o)) | |
| 19 | 15, 16, 17, 18, 1 | evlsrhm 21995 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 20 | 14, 19 | mp3an1 1450 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 21 | eqidd 2730 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊)) | |
| 22 | eqidd 2730 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) | |
| 23 | evls1rhm.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 25 | 23, 24 | ply1bas 22079 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘(1o mPoly 𝑈)) |
| 26 | 25 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1o mPoly 𝑈))) |
| 27 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 28 | 23, 16, 27 | ply1plusg 22108 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘(1o mPoly 𝑈)) |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g‘𝑊) = (+g‘(1o mPoly 𝑈))) |
| 30 | 29 | oveqdr 7415 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘(1o mPoly 𝑈))𝑦)) |
| 31 | eqidd 2730 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))))) → (𝑥(+g‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦) = (𝑥(+g‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦)) | |
| 32 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 33 | 23, 16, 32 | ply1mulr 22110 | . . . . . . 7 ⊢ (.r‘𝑊) = (.r‘(1o mPoly 𝑈)) |
| 34 | 33 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r‘𝑊) = (.r‘(1o mPoly 𝑈))) |
| 35 | 34 | oveqdr 7415 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)𝑦) = (𝑥(.r‘(1o mPoly 𝑈))𝑦)) |
| 36 | eqidd 2730 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))))) → (𝑥(.r‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦) = (𝑥(.r‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦)) | |
| 37 | 21, 22, 26, 22, 30, 31, 35, 36 | rhmpropd 20518 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o))) = ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 38 | 20, 37 | eleqtrrd 2831 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
| 39 | rhmco 20410 | . . 3 ⊢ (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑m 1o)) RingHom 𝑇) ∧ ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) | |
| 40 | 13, 38, 39 | syl2an2r 685 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) |
| 41 | 10, 40 | eqeltrd 2828 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 ↦ cmpt 5188 × cxp 5636 ∘ ccom 5642 Oncon0 6332 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 ↑m cmap 8799 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 .rcmulr 17221 ↑s cpws 17409 CRingccrg 20143 RingHom crh 20378 SubRingcsubrg 20478 mPoly cmpl 21815 evalSub ces 21979 Poly1cpl1 22061 evalSub1 ces1 22200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-psr1 22064 df-ply1 22066 df-evls1 22202 |
| This theorem is referenced by: evls1gsumadd 22211 evls1gsummul 22212 evls1pw 22213 evls1expd 22254 evls1fpws 22256 ressply1evl 22257 evls1fn 33529 evls1dm 33530 evls1fvf 33531 elirng 33681 irngnzply1lem 33685 irngnzply1 33686 |
| Copyright terms: Public domain | W3C validator |