MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1rhm Structured version   Visualization version   GIF version

Theorem evls1rhm 21559
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evls1rhm.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1rhm.b 𝐵 = (Base‘𝑆)
evls1rhm.t 𝑇 = (𝑆s 𝐵)
evls1rhm.u 𝑈 = (𝑆s 𝑅)
evls1rhm.w 𝑊 = (Poly1𝑈)
Assertion
Ref Expression
evls1rhm ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇))

Proof of Theorem evls1rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1rhm.b . . . . . 6 𝐵 = (Base‘𝑆)
21subrgss 20096 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
32adantl 482 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
4 elpwg 4546 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
54adantl 482 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
63, 5mpbird 256 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵)
7 evls1rhm.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
8 eqid 2737 . . . 4 (1o evalSub 𝑆) = (1o evalSub 𝑆)
97, 8, 1evls1fval 21556 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
106, 9syldan 591 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
11 evls1rhm.t . . . 4 𝑇 = (𝑆s 𝐵)
12 eqid 2737 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
131, 11, 12evls1rhmlem 21558 . . 3 (𝑆 ∈ CRing → (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆s (𝐵m 1o)) RingHom 𝑇))
14 1on 8354 . . . . 5 1o ∈ On
15 eqid 2737 . . . . . 6 ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅)
16 eqid 2737 . . . . . 6 (1o mPoly 𝑈) = (1o mPoly 𝑈)
17 evls1rhm.u . . . . . 6 𝑈 = (𝑆s 𝑅)
18 eqid 2737 . . . . . 6 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
1915, 16, 17, 18, 1evlsrhm 21369 . . . . 5 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
2014, 19mp3an1 1447 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
21 eqidd 2738 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊))
22 eqidd 2738 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o))))
23 evls1rhm.w . . . . . . 7 𝑊 = (Poly1𝑈)
24 eqid 2737 . . . . . . 7 (PwSer1𝑈) = (PwSer1𝑈)
25 eqid 2737 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2623, 24, 25ply1bas 21437 . . . . . 6 (Base‘𝑊) = (Base‘(1o mPoly 𝑈))
2726a1i 11 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1o mPoly 𝑈)))
28 eqid 2737 . . . . . . . 8 (+g𝑊) = (+g𝑊)
2923, 16, 28ply1plusg 21467 . . . . . . 7 (+g𝑊) = (+g‘(1o mPoly 𝑈))
3029a1i 11 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g𝑊) = (+g‘(1o mPoly 𝑈)))
3130oveqdr 7341 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g‘(1o mPoly 𝑈))𝑦))
32 eqidd 2738 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆s (𝐵m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆s (𝐵m 1o))))) → (𝑥(+g‘(𝑆s (𝐵m 1o)))𝑦) = (𝑥(+g‘(𝑆s (𝐵m 1o)))𝑦))
33 eqid 2737 . . . . . . . 8 (.r𝑊) = (.r𝑊)
3423, 16, 33ply1mulr 21469 . . . . . . 7 (.r𝑊) = (.r‘(1o mPoly 𝑈))
3534a1i 11 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r𝑊) = (.r‘(1o mPoly 𝑈)))
3635oveqdr 7341 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑥(.r‘(1o mPoly 𝑈))𝑦))
37 eqidd 2738 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆s (𝐵m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆s (𝐵m 1o))))) → (𝑥(.r‘(𝑆s (𝐵m 1o)))𝑦) = (𝑥(.r‘(𝑆s (𝐵m 1o)))𝑦))
3821, 22, 27, 22, 31, 32, 36, 37rhmpropd 20131 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆s (𝐵m 1o))) = ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
3920, 38eleqtrrd 2841 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆s (𝐵m 1o))))
40 rhmco 20048 . . 3 (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆s (𝐵m 1o)) RingHom 𝑇) ∧ ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆s (𝐵m 1o)))) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇))
4113, 39, 40syl2an2r 682 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇))
4210, 41eqeltrd 2838 1 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wss 3896  𝒫 cpw 4543  {csn 4569  cmpt 5168   × cxp 5603  ccom 5609  Oncon0 6286  cfv 6463  (class class class)co 7313  1oc1o 8335  m cmap 8661  Basecbs 16979  s cress 17008  +gcplusg 17029  .rcmulr 17030  s cpws 17224  CRingccrg 19851   RingHom crh 20023  SubRingcsubrg 20091   mPoly cmpl 21180   evalSub ces 21351  PwSer1cps1 21417  Poly1cpl1 21419   evalSub1 ces1 21550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-iin 4938  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-ofr 7572  df-om 7756  df-1st 7874  df-2nd 7875  df-supp 8023  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-map 8663  df-pm 8664  df-ixp 8732  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-fsupp 9197  df-sup 9269  df-oi 9337  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-z 12390  df-dec 12508  df-uz 12653  df-fz 13310  df-fzo 13453  df-seq 13792  df-hash 14115  df-struct 16915  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-mulr 17043  df-sca 17045  df-vsca 17046  df-ip 17047  df-tset 17048  df-ple 17049  df-ds 17051  df-hom 17053  df-cco 17054  df-0g 17219  df-gsum 17220  df-prds 17225  df-pws 17227  df-mre 17362  df-mrc 17363  df-acs 17365  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-mhm 18497  df-submnd 18498  df-grp 18647  df-minusg 18648  df-sbg 18649  df-mulg 18768  df-subg 18819  df-ghm 18899  df-cntz 18990  df-cmn 19455  df-abl 19456  df-mgp 19788  df-ur 19805  df-srg 19809  df-ring 19852  df-cring 19853  df-rnghom 20026  df-subrg 20093  df-lmod 20196  df-lss 20265  df-lsp 20305  df-assa 21131  df-asp 21132  df-ascl 21133  df-psr 21183  df-mvr 21184  df-mpl 21185  df-opsr 21187  df-evls 21353  df-psr1 21422  df-ply1 21424  df-evls1 21552
This theorem is referenced by:  evls1gsumadd  21561  evls1gsummul  21562  evls1pw  21563
  Copyright terms: Public domain W3C validator