Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evls1rhm | Structured version Visualization version GIF version |
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evls1rhm.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1rhm.b | ⊢ 𝐵 = (Base‘𝑆) |
evls1rhm.t | ⊢ 𝑇 = (𝑆 ↑s 𝐵) |
evls1rhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evls1rhm.w | ⊢ 𝑊 = (Poly1‘𝑈) |
Ref | Expression |
---|---|
evls1rhm | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1rhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
2 | 1 | subrgss 20096 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
3 | 2 | adantl 482 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
4 | elpwg 4546 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
6 | 3, 5 | mpbird 256 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
7 | evls1rhm.q | . . . 4 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
8 | eqid 2737 | . . . 4 ⊢ (1o evalSub 𝑆) = (1o evalSub 𝑆) | |
9 | 7, 8, 1 | evls1fval 21556 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))) |
10 | 6, 9 | syldan 591 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))) |
11 | evls1rhm.t | . . . 4 ⊢ 𝑇 = (𝑆 ↑s 𝐵) | |
12 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
13 | 1, 11, 12 | evls1rhmlem 21558 | . . 3 ⊢ (𝑆 ∈ CRing → (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
14 | 1on 8354 | . . . . 5 ⊢ 1o ∈ On | |
15 | eqid 2737 | . . . . . 6 ⊢ ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) | |
16 | eqid 2737 | . . . . . 6 ⊢ (1o mPoly 𝑈) = (1o mPoly 𝑈) | |
17 | evls1rhm.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
18 | eqid 2737 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 1o)) = (𝑆 ↑s (𝐵 ↑m 1o)) | |
19 | 15, 16, 17, 18, 1 | evlsrhm 21369 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
20 | 14, 19 | mp3an1 1447 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
21 | eqidd 2738 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊)) | |
22 | eqidd 2738 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑆 ↑s (𝐵 ↑m 1o)))) | |
23 | evls1rhm.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
24 | eqid 2737 | . . . . . . 7 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
25 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
26 | 23, 24, 25 | ply1bas 21437 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘(1o mPoly 𝑈)) |
27 | 26 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1o mPoly 𝑈))) |
28 | eqid 2737 | . . . . . . . 8 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
29 | 23, 16, 28 | ply1plusg 21467 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘(1o mPoly 𝑈)) |
30 | 29 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g‘𝑊) = (+g‘(1o mPoly 𝑈))) |
31 | 30 | oveqdr 7341 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘(1o mPoly 𝑈))𝑦)) |
32 | eqidd 2738 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))))) → (𝑥(+g‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦) = (𝑥(+g‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦)) | |
33 | eqid 2737 | . . . . . . . 8 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
34 | 23, 16, 33 | ply1mulr 21469 | . . . . . . 7 ⊢ (.r‘𝑊) = (.r‘(1o mPoly 𝑈)) |
35 | 34 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r‘𝑊) = (.r‘(1o mPoly 𝑈))) |
36 | 35 | oveqdr 7341 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)𝑦) = (𝑥(.r‘(1o mPoly 𝑈))𝑦)) |
37 | eqidd 2738 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 1o))))) → (𝑥(.r‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦) = (𝑥(.r‘(𝑆 ↑s (𝐵 ↑m 1o)))𝑦)) | |
38 | 21, 22, 27, 22, 31, 32, 36, 37 | rhmpropd 20131 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o))) = ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
39 | 20, 38 | eleqtrrd 2841 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) |
40 | rhmco 20048 | . . 3 ⊢ (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑m 1o)) RingHom 𝑇) ∧ ((1o evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 1o)))) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) | |
41 | 13, 39, 40 | syl2an2r 682 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) |
42 | 10, 41 | eqeltrd 2838 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 𝒫 cpw 4543 {csn 4569 ↦ cmpt 5168 × cxp 5603 ∘ ccom 5609 Oncon0 6286 ‘cfv 6463 (class class class)co 7313 1oc1o 8335 ↑m cmap 8661 Basecbs 16979 ↾s cress 17008 +gcplusg 17029 .rcmulr 17030 ↑s cpws 17224 CRingccrg 19851 RingHom crh 20023 SubRingcsubrg 20091 mPoly cmpl 21180 evalSub ces 21351 PwSer1cps1 21417 Poly1cpl1 21419 evalSub1 ces1 21550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-ofr 7572 df-om 7756 df-1st 7874 df-2nd 7875 df-supp 8023 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-pm 8664 df-ixp 8732 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fsupp 9197 df-sup 9269 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-fz 13310 df-fzo 13453 df-seq 13792 df-hash 14115 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-ip 17047 df-tset 17048 df-ple 17049 df-ds 17051 df-hom 17053 df-cco 17054 df-0g 17219 df-gsum 17220 df-prds 17225 df-pws 17227 df-mre 17362 df-mrc 17363 df-acs 17365 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-mhm 18497 df-submnd 18498 df-grp 18647 df-minusg 18648 df-sbg 18649 df-mulg 18768 df-subg 18819 df-ghm 18899 df-cntz 18990 df-cmn 19455 df-abl 19456 df-mgp 19788 df-ur 19805 df-srg 19809 df-ring 19852 df-cring 19853 df-rnghom 20026 df-subrg 20093 df-lmod 20196 df-lss 20265 df-lsp 20305 df-assa 21131 df-asp 21132 df-ascl 21133 df-psr 21183 df-mvr 21184 df-mpl 21185 df-opsr 21187 df-evls 21353 df-psr1 21422 df-ply1 21424 df-evls1 21552 |
This theorem is referenced by: evls1gsumadd 21561 evls1gsummul 21562 evls1pw 21563 |
Copyright terms: Public domain | W3C validator |