![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imaenfi | Structured version Visualization version GIF version |
Description: If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 9014). (Contributed by BTernaryTau, 29-Sep-2024.) |
Ref | Expression |
---|---|
f1imaenfi | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ores 6847 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
2 | f1oenfi 9186 | . . . . 5 ⊢ ((𝐶 ∈ Fin ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → 𝐶 ≈ (𝐹 “ 𝐶)) | |
3 | ensymfib 9191 | . . . . . 6 ⊢ (𝐶 ∈ Fin → (𝐶 ≈ (𝐹 “ 𝐶) ↔ (𝐹 “ 𝐶) ≈ 𝐶)) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ Fin ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → (𝐶 ≈ (𝐹 “ 𝐶) ↔ (𝐹 “ 𝐶) ≈ 𝐶)) |
5 | 2, 4 | mpbid 231 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → (𝐹 “ 𝐶) ≈ 𝐶) |
6 | 1, 5 | sylan2 592 | . . 3 ⊢ ((𝐶 ∈ Fin ∧ (𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴)) → (𝐹 “ 𝐶) ≈ 𝐶) |
7 | 6 | 3impb 1114 | . 2 ⊢ ((𝐶 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) |
8 | 7 | 3coml 1126 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3948 class class class wbr 5148 ↾ cres 5678 “ cima 5679 –1-1→wf1 6540 –1-1-onto→wf1o 6542 ≈ cen 8940 Fincfn 8943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7860 df-1o 8470 df-en 8944 df-fin 8947 |
This theorem is referenced by: phplem2 9212 |
Copyright terms: Public domain | W3C validator |