Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1imaenfi | Structured version Visualization version GIF version |
Description: If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 8775). (Contributed by BTernaryTau, 29-Sep-2024.) |
Ref | Expression |
---|---|
f1imaenfi | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ores 6727 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
2 | f1oenfi 8939 | . . . . 5 ⊢ ((𝐶 ∈ Fin ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → 𝐶 ≈ (𝐹 “ 𝐶)) | |
3 | ensymfib 8944 | . . . . . 6 ⊢ (𝐶 ∈ Fin → (𝐶 ≈ (𝐹 “ 𝐶) ↔ (𝐹 “ 𝐶) ≈ 𝐶)) | |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝐶 ∈ Fin ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → (𝐶 ≈ (𝐹 “ 𝐶) ↔ (𝐹 “ 𝐶) ≈ 𝐶)) |
5 | 2, 4 | mpbid 231 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → (𝐹 “ 𝐶) ≈ 𝐶) |
6 | 1, 5 | sylan2 593 | . . 3 ⊢ ((𝐶 ∈ Fin ∧ (𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴)) → (𝐹 “ 𝐶) ≈ 𝐶) |
7 | 6 | 3impb 1114 | . 2 ⊢ ((𝐶 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) |
8 | 7 | 3coml 1126 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 ⊆ wss 3892 class class class wbr 5079 ↾ cres 5591 “ cima 5592 –1-1→wf1 6428 –1-1-onto→wf1o 6430 ≈ cen 8705 Fincfn 8708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-om 7702 df-1o 8282 df-en 8709 df-fin 8712 |
This theorem is referenced by: phplem2 8964 |
Copyright terms: Public domain | W3C validator |