MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaenfi Structured version   Visualization version   GIF version

Theorem f1imaenfi 9202
Description: If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 9014). (Contributed by BTernaryTau, 29-Sep-2024.)
Assertion
Ref Expression
f1imaenfi ((𝐹:𝐴1-1𝐵𝐶𝐴𝐶 ∈ Fin) → (𝐹𝐶) ≈ 𝐶)

Proof of Theorem f1imaenfi
StepHypRef Expression
1 f1ores 6847 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
2 f1oenfi 9186 . . . . 5 ((𝐶 ∈ Fin ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
3 ensymfib 9191 . . . . . 6 (𝐶 ∈ Fin → (𝐶 ≈ (𝐹𝐶) ↔ (𝐹𝐶) ≈ 𝐶))
43adantr 480 . . . . 5 ((𝐶 ∈ Fin ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → (𝐶 ≈ (𝐹𝐶) ↔ (𝐹𝐶) ≈ 𝐶))
52, 4mpbid 231 . . . 4 ((𝐶 ∈ Fin ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → (𝐹𝐶) ≈ 𝐶)
61, 5sylan2 592 . . 3 ((𝐶 ∈ Fin ∧ (𝐹:𝐴1-1𝐵𝐶𝐴)) → (𝐹𝐶) ≈ 𝐶)
763impb 1114 . 2 ((𝐶 ∈ Fin ∧ 𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) ≈ 𝐶)
873coml 1126 1 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐶 ∈ Fin) → (𝐹𝐶) ≈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086  wcel 2105  wss 3948   class class class wbr 5148  cres 5678  cima 5679  1-1wf1 6540  1-1-ontowf1o 6542  cen 8940  Fincfn 8943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7860  df-1o 8470  df-en 8944  df-fin 8947
This theorem is referenced by:  phplem2  9212
  Copyright terms: Public domain W3C validator