Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1imaenfi | Structured version Visualization version GIF version |
Description: If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 8732). (Contributed by BTernaryTau, 29-Sep-2024.) |
Ref | Expression |
---|---|
f1imaenfi | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ores 6711 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
2 | f1oenfi 8903 | . . . . 5 ⊢ ((𝐶 ∈ Fin ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → 𝐶 ≈ (𝐹 “ 𝐶)) | |
3 | ensymfib 8907 | . . . . . 6 ⊢ (𝐶 ∈ Fin → (𝐶 ≈ (𝐹 “ 𝐶) ↔ (𝐹 “ 𝐶) ≈ 𝐶)) | |
4 | 3 | adantr 484 | . . . . 5 ⊢ ((𝐶 ∈ Fin ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → (𝐶 ≈ (𝐹 “ 𝐶) ↔ (𝐹 “ 𝐶) ≈ 𝐶)) |
5 | 2, 4 | mpbid 235 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → (𝐹 “ 𝐶) ≈ 𝐶) |
6 | 1, 5 | sylan2 596 | . . 3 ⊢ ((𝐶 ∈ Fin ∧ (𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴)) → (𝐹 “ 𝐶) ≈ 𝐶) |
7 | 6 | 3impb 1117 | . 2 ⊢ ((𝐶 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) |
8 | 7 | 3coml 1129 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2112 ⊆ wss 3884 class class class wbr 5070 ↾ cres 5581 “ cima 5582 –1-1→wf1 6412 –1-1-onto→wf1o 6414 ≈ cen 8665 Fincfn 8668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-om 7685 df-1o 8244 df-en 8669 df-fin 8672 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |