| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymfib | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 8931). (Contributed by BTernaryTau, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| ensymfib | ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 8885 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
| 2 | 19.42v 1954 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) ↔ (𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 3 | f1ocnv 6780 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) | |
| 4 | f1oenfirn 9096 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑓:𝐵–1-1-onto→𝐴) → 𝐵 ≈ 𝐴) | |
| 5 | 3, 4 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
| 6 | 5 | exlimiv 1931 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
| 7 | 2, 6 | sylbir 235 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
| 8 | 1, 7 | sylan2b 594 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ≈ 𝐴) |
| 9 | bren 8885 | . . 3 ⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) | |
| 10 | 19.42v 1954 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) ↔ (𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) | |
| 11 | f1ocnv 6780 | . . . . . 6 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ◡𝑔:𝐴–1-1-onto→𝐵) | |
| 12 | f1oenfi 9095 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑔:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 13 | 11, 12 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
| 14 | 13 | exlimiv 1931 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
| 15 | 10, 14 | sylbir 235 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
| 16 | 9, 15 | sylan2b 594 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝐵) |
| 17 | 8, 16 | impbida 800 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 class class class wbr 5093 ◡ccnv 5618 –1-1-onto→wf1o 6485 ≈ cen 8872 Fincfn 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-en 8876 df-fin 8879 |
| This theorem is referenced by: enfii 9102 enfi 9103 f1imaenfi 9111 domnsymfi 9116 sdomdomtrfi 9117 domsdomtrfi 9118 phplem1 9120 phplem2 9121 nneneq 9122 php 9123 php2 9124 php3 9125 phpeqd 9128 onomeneq 9130 ominf 9155 findcard3 9174 nnsdomg 9190 fiint 9218 |
| Copyright terms: Public domain | W3C validator |