MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensymfib Structured version   Visualization version   GIF version

Theorem ensymfib 9222
Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 9041). (Contributed by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
ensymfib (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))

Proof of Theorem ensymfib
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8994 . . 3 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 19.42v 1951 . . . 4 (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴1-1-onto𝐵) ↔ (𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
3 f1ocnv 6861 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
4 f1oenfirn 9218 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑓:𝐵1-1-onto𝐴) → 𝐵𝐴)
53, 4sylan2 593 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵𝐴)
65exlimiv 1928 . . . 4 (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵𝐴)
72, 6sylbir 235 . . 3 ((𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴1-1-onto𝐵) → 𝐵𝐴)
81, 7sylan2b 594 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → 𝐵𝐴)
9 bren 8994 . . 3 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
10 19.42v 1951 . . . 4 (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵1-1-onto𝐴) ↔ (𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵1-1-onto𝐴))
11 f1ocnv 6861 . . . . . 6 (𝑔:𝐵1-1-onto𝐴𝑔:𝐴1-1-onto𝐵)
12 f1oenfi 9217 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑔:𝐴1-1-onto𝐵) → 𝐴𝐵)
1311, 12sylan2 593 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑔:𝐵1-1-onto𝐴) → 𝐴𝐵)
1413exlimiv 1928 . . . 4 (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵1-1-onto𝐴) → 𝐴𝐵)
1510, 14sylbir 235 . . 3 ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵1-1-onto𝐴) → 𝐴𝐵)
169, 15sylan2b 594 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴𝐵)
178, 16impbida 801 1 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1776  wcel 2106   class class class wbr 5148  ccnv 5688  1-1-ontowf1o 6562  cen 8981  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-fin 8988
This theorem is referenced by:  enfii  9224  enfi  9225  f1imaenfi  9233  domnsymfi  9238  sdomdomtrfi  9239  domsdomtrfi  9240  phplem1  9242  phplem2  9243  nneneq  9244  php  9245  php2  9246  php3  9247  phpeqd  9250  onomeneq  9263  ominf  9292  findcard3  9316  nnsdomg  9333  fiint  9364
  Copyright terms: Public domain W3C validator