![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymfib | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 9031). (Contributed by BTernaryTau, 9-Sep-2024.) |
Ref | Expression |
---|---|
ensymfib | ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8982 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
2 | 19.42v 1949 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) ↔ (𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
3 | f1ocnv 6856 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) | |
4 | f1oenfirn 9216 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑓:𝐵–1-1-onto→𝐴) → 𝐵 ≈ 𝐴) | |
5 | 3, 4 | sylan2 591 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
6 | 5 | exlimiv 1925 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
7 | 2, 6 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
8 | 1, 7 | sylan2b 592 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ≈ 𝐴) |
9 | bren 8982 | . . 3 ⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) | |
10 | 19.42v 1949 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) ↔ (𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) | |
11 | f1ocnv 6856 | . . . . . 6 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ◡𝑔:𝐴–1-1-onto→𝐵) | |
12 | f1oenfi 9215 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑔:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
13 | 11, 12 | sylan2 591 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
14 | 13 | exlimiv 1925 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
15 | 10, 14 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
16 | 9, 15 | sylan2b 592 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝐵) |
17 | 8, 16 | impbida 799 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∃wex 1773 ∈ wcel 2098 class class class wbr 5152 ◡ccnv 5681 –1-1-onto→wf1o 6552 ≈ cen 8969 Fincfn 8972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-om 7879 df-1o 8495 df-en 8973 df-fin 8976 |
This theorem is referenced by: enfii 9222 enfi 9223 f1imaenfi 9231 domnsymfi 9236 sdomdomtrfi 9237 domsdomtrfi 9238 phplem1 9240 phplem2 9241 nneneq 9242 php 9243 php2 9244 php3 9245 phpeqd 9248 onomeneq 9261 ominf 9291 findcard3 9318 nnsdomg 9335 |
Copyright terms: Public domain | W3C validator |