![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymfib | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 8945). (Contributed by BTernaryTau, 9-Sep-2024.) |
Ref | Expression |
---|---|
ensymfib | ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8896 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
2 | 19.42v 1958 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) ↔ (𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
3 | f1ocnv 6797 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) | |
4 | f1oenfirn 9130 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑓:𝐵–1-1-onto→𝐴) → 𝐵 ≈ 𝐴) | |
5 | 3, 4 | sylan2 594 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
6 | 5 | exlimiv 1934 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
7 | 2, 6 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
8 | 1, 7 | sylan2b 595 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ≈ 𝐴) |
9 | bren 8896 | . . 3 ⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) | |
10 | 19.42v 1958 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) ↔ (𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) | |
11 | f1ocnv 6797 | . . . . . 6 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ◡𝑔:𝐴–1-1-onto→𝐵) | |
12 | f1oenfi 9129 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑔:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
13 | 11, 12 | sylan2 594 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
14 | 13 | exlimiv 1934 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
15 | 10, 14 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
16 | 9, 15 | sylan2b 595 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝐵) |
17 | 8, 16 | impbida 800 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 class class class wbr 5106 ◡ccnv 5633 –1-1-onto→wf1o 6496 ≈ cen 8883 Fincfn 8886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-om 7804 df-1o 8413 df-en 8887 df-fin 8890 |
This theorem is referenced by: enfii 9136 enfi 9137 f1imaenfi 9145 domnsymfi 9150 sdomdomtrfi 9151 domsdomtrfi 9152 phplem1 9154 phplem2 9155 nneneq 9156 php 9157 php2 9158 php3 9159 phpeqd 9162 onomeneq 9175 ominf 9205 findcard3 9232 nnsdomg 9249 |
Copyright terms: Public domain | W3C validator |