MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensymfib Structured version   Visualization version   GIF version

Theorem ensymfib 9093
Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 8924). (Contributed by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
ensymfib (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))

Proof of Theorem ensymfib
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8879 . . 3 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 19.42v 1954 . . . 4 (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴1-1-onto𝐵) ↔ (𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
3 f1ocnv 6775 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
4 f1oenfirn 9089 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑓:𝐵1-1-onto𝐴) → 𝐵𝐴)
53, 4sylan2 593 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵𝐴)
65exlimiv 1931 . . . 4 (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵𝐴)
72, 6sylbir 235 . . 3 ((𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴1-1-onto𝐵) → 𝐵𝐴)
81, 7sylan2b 594 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → 𝐵𝐴)
9 bren 8879 . . 3 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
10 19.42v 1954 . . . 4 (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵1-1-onto𝐴) ↔ (𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵1-1-onto𝐴))
11 f1ocnv 6775 . . . . . 6 (𝑔:𝐵1-1-onto𝐴𝑔:𝐴1-1-onto𝐵)
12 f1oenfi 9088 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑔:𝐴1-1-onto𝐵) → 𝐴𝐵)
1311, 12sylan2 593 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑔:𝐵1-1-onto𝐴) → 𝐴𝐵)
1413exlimiv 1931 . . . 4 (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵1-1-onto𝐴) → 𝐴𝐵)
1510, 14sylbir 235 . . 3 ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵1-1-onto𝐴) → 𝐴𝐵)
169, 15sylan2b 594 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴𝐵)
178, 16impbida 800 1 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wcel 2111   class class class wbr 5091  ccnv 5615  1-1-ontowf1o 6480  cen 8866  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-fin 8873
This theorem is referenced by:  enfii  9095  enfi  9096  f1imaenfi  9104  domnsymfi  9109  sdomdomtrfi  9110  domsdomtrfi  9111  phplem1  9113  phplem2  9114  nneneq  9115  php  9116  php2  9117  php3  9118  phpeqd  9121  onomeneq  9123  ominf  9148  findcard3  9167  nnsdomg  9183  fiint  9211
  Copyright terms: Public domain W3C validator