MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensymfib Structured version   Visualization version   GIF version

Theorem ensymfib 9220
Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 9031). (Contributed by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
ensymfib (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))

Proof of Theorem ensymfib
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8982 . . 3 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 19.42v 1949 . . . 4 (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴1-1-onto𝐵) ↔ (𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
3 f1ocnv 6856 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
4 f1oenfirn 9216 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑓:𝐵1-1-onto𝐴) → 𝐵𝐴)
53, 4sylan2 591 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵𝐴)
65exlimiv 1925 . . . 4 (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵𝐴)
72, 6sylbir 234 . . 3 ((𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴1-1-onto𝐵) → 𝐵𝐴)
81, 7sylan2b 592 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → 𝐵𝐴)
9 bren 8982 . . 3 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
10 19.42v 1949 . . . 4 (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵1-1-onto𝐴) ↔ (𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵1-1-onto𝐴))
11 f1ocnv 6856 . . . . . 6 (𝑔:𝐵1-1-onto𝐴𝑔:𝐴1-1-onto𝐵)
12 f1oenfi 9215 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑔:𝐴1-1-onto𝐵) → 𝐴𝐵)
1311, 12sylan2 591 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑔:𝐵1-1-onto𝐴) → 𝐴𝐵)
1413exlimiv 1925 . . . 4 (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵1-1-onto𝐴) → 𝐴𝐵)
1510, 14sylbir 234 . . 3 ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵1-1-onto𝐴) → 𝐴𝐵)
169, 15sylan2b 592 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴𝐵)
178, 16impbida 799 1 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wex 1773  wcel 2098   class class class wbr 5152  ccnv 5681  1-1-ontowf1o 6552  cen 8969  Fincfn 8972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7879  df-1o 8495  df-en 8973  df-fin 8976
This theorem is referenced by:  enfii  9222  enfi  9223  f1imaenfi  9231  domnsymfi  9236  sdomdomtrfi  9237  domsdomtrfi  9238  phplem1  9240  phplem2  9241  nneneq  9242  php  9243  php2  9244  php3  9245  phpeqd  9248  onomeneq  9261  ominf  9291  findcard3  9318  nnsdomg  9335
  Copyright terms: Public domain W3C validator