![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymfib | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 9000). (Contributed by BTernaryTau, 9-Sep-2024.) |
Ref | Expression |
---|---|
ensymfib | ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8951 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
2 | 19.42v 1949 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) ↔ (𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
3 | f1ocnv 6839 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) | |
4 | f1oenfirn 9185 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑓:𝐵–1-1-onto→𝐴) → 𝐵 ≈ 𝐴) | |
5 | 3, 4 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
6 | 5 | exlimiv 1925 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
7 | 2, 6 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
8 | 1, 7 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ≈ 𝐴) |
9 | bren 8951 | . . 3 ⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) | |
10 | 19.42v 1949 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) ↔ (𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) | |
11 | f1ocnv 6839 | . . . . . 6 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ◡𝑔:𝐴–1-1-onto→𝐵) | |
12 | f1oenfi 9184 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑔:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
13 | 11, 12 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
14 | 13 | exlimiv 1925 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
15 | 10, 14 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
16 | 9, 15 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝐵) |
17 | 8, 16 | impbida 798 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1773 ∈ wcel 2098 class class class wbr 5141 ◡ccnv 5668 –1-1-onto→wf1o 6536 ≈ cen 8938 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-om 7853 df-1o 8467 df-en 8942 df-fin 8945 |
This theorem is referenced by: enfii 9191 enfi 9192 f1imaenfi 9200 domnsymfi 9205 sdomdomtrfi 9206 domsdomtrfi 9207 phplem1 9209 phplem2 9210 nneneq 9211 php 9212 php2 9213 php3 9214 phpeqd 9217 onomeneq 9230 ominf 9260 findcard3 9287 nnsdomg 9304 |
Copyright terms: Public domain | W3C validator |