![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymfib | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 8995). (Contributed by BTernaryTau, 9-Sep-2024.) |
Ref | Expression |
---|---|
ensymfib | ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8946 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
2 | 19.42v 1949 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) ↔ (𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
3 | f1ocnv 6836 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) | |
4 | f1oenfirn 9180 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑓:𝐵–1-1-onto→𝐴) → 𝐵 ≈ 𝐴) | |
5 | 3, 4 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
6 | 5 | exlimiv 1925 | . . . 4 ⊢ (∃𝑓(𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
7 | 2, 6 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ≈ 𝐴) |
8 | 1, 7 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ≈ 𝐴) |
9 | bren 8946 | . . 3 ⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) | |
10 | 19.42v 1949 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) ↔ (𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) | |
11 | f1ocnv 6836 | . . . . . 6 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ◡𝑔:𝐴–1-1-onto→𝐵) | |
12 | f1oenfi 9179 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ◡𝑔:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
13 | 11, 12 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
14 | 13 | exlimiv 1925 | . . . 4 ⊢ (∃𝑔(𝐴 ∈ Fin ∧ 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
15 | 10, 14 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) → 𝐴 ≈ 𝐵) |
16 | 9, 15 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝐵) |
17 | 8, 16 | impbida 798 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1773 ∈ wcel 2098 class class class wbr 5139 ◡ccnv 5666 –1-1-onto→wf1o 6533 ≈ cen 8933 Fincfn 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-om 7850 df-1o 8462 df-en 8937 df-fin 8940 |
This theorem is referenced by: enfii 9186 enfi 9187 f1imaenfi 9195 domnsymfi 9200 sdomdomtrfi 9201 domsdomtrfi 9202 phplem1 9204 phplem2 9205 nneneq 9206 php 9207 php2 9208 php3 9209 phpeqd 9212 onomeneq 9225 ominf 9255 findcard3 9282 nnsdomg 9299 |
Copyright terms: Public domain | W3C validator |