![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cayleyth | Structured version Visualization version GIF version |
Description: Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup ℎ of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
cayley.x | ⊢ 𝑋 = (Base‘𝐺) |
cayley.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
Ref | Expression |
---|---|
cayleyth | ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayley.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
2 | cayley.h | . . . 4 ⊢ 𝐻 = (SymGrp‘𝑋) | |
3 | eqid 2737 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2737 | . . . 4 ⊢ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
5 | eqid 2737 | . . . 4 ⊢ ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
6 | 1, 2, 3, 4, 5 | cayley 19456 | . . 3 ⊢ (𝐺 ∈ Grp → (ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
7 | 6 | simp1d 1143 | . 2 ⊢ (𝐺 ∈ Grp → ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻)) |
8 | 6 | simp2d 1144 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
9 | 6 | simp3d 1145 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
10 | f1oeq1 6844 | . . . 4 ⊢ (𝑓 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ↔ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
11 | 10 | rspcev 3625 | . . 3 ⊢ (((𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
12 | 8, 9, 11 | syl2anc 584 | . 2 ⊢ (𝐺 ∈ Grp → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
13 | oveq2 7446 | . . . . 5 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐻 ↾s 𝑠) = (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
14 | 13 | oveq2d 7454 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐺 GrpHom (𝐻 ↾s 𝑠)) = (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
15 | f1oeq3 6846 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→𝑠 ↔ 𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
16 | 14, 15 | rexeqbidv 3347 | . . 3 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠 ↔ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
17 | 16 | rspcev 3625 | . 2 ⊢ ((ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
18 | 7, 12, 17 | syl2anc 584 | 1 ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 ↦ cmpt 5234 ran crn 5694 –1-1-onto→wf1o 6568 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 ↾s cress 17283 +gcplusg 17307 Grpcgrp 18973 SubGrpcsubg 19160 GrpHom cghm 19252 SymGrpcsymg 19410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-tset 17326 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-mhm 18818 df-submnd 18819 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-ghm 19253 df-ga 19330 df-symg 19411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |