MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleyth Structured version   Visualization version   GIF version

Theorem cayleyth 18807
Description: Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayley.x 𝑋 = (Base‘𝐺)
cayley.h 𝐻 = (SymGrp‘𝑋)
Assertion
Ref Expression
cayleyth (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻s 𝑠))𝑓:𝑋1-1-onto𝑠)
Distinct variable groups:   𝑓,𝑠,𝐺   𝑓,𝐻,𝑠   𝑓,𝑋,𝑠

Proof of Theorem cayleyth
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayley.x . . . 4 𝑋 = (Base‘𝐺)
2 cayley.h . . . 4 𝐻 = (SymGrp‘𝑋)
3 eqid 2737 . . . 4 (+g𝐺) = (+g𝐺)
4 eqid 2737 . . . 4 (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))
5 eqid 2737 . . . 4 ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))
61, 2, 3, 4, 5cayley 18806 . . 3 (𝐺 ∈ Grp → (ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))) ∧ (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))):𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
76simp1d 1144 . 2 (𝐺 ∈ Grp → ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (SubGrp‘𝐻))
86simp2d 1145 . . 3 (𝐺 ∈ Grp → (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))))
96simp3d 1146 . . 3 (𝐺 ∈ Grp → (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))):𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))
10 f1oeq1 6649 . . . 4 (𝑓 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ↔ (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))):𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
1110rspcev 3537 . . 3 (((𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))) ∧ (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))):𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))) → ∃𝑓 ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))
128, 9, 11syl2anc 587 . 2 (𝐺 ∈ Grp → ∃𝑓 ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))
13 oveq2 7221 . . . . 5 (𝑠 = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (𝐻s 𝑠) = (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
1413oveq2d 7229 . . . 4 (𝑠 = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (𝐺 GrpHom (𝐻s 𝑠)) = (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))))
15 f1oeq3 6651 . . . 4 (𝑠 = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (𝑓:𝑋1-1-onto𝑠𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
1614, 15rexeqbidv 3314 . . 3 (𝑠 = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (∃𝑓 ∈ (𝐺 GrpHom (𝐻s 𝑠))𝑓:𝑋1-1-onto𝑠 ↔ ∃𝑓 ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
1716rspcev 3537 . 2 ((ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ ∃𝑓 ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))) → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻s 𝑠))𝑓:𝑋1-1-onto𝑠)
187, 12, 17syl2anc 587 1 (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻s 𝑠))𝑓:𝑋1-1-onto𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wrex 3062  cmpt 5135  ran crn 5552  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  Basecbs 16760  s cress 16784  +gcplusg 16802  Grpcgrp 18365  SubGrpcsubg 18537   GrpHom cghm 18619  SymGrpcsymg 18759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-tset 16821  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-efmnd 18296  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-ghm 18620  df-ga 18684  df-symg 18760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator