| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayleyth | Structured version Visualization version GIF version | ||
| Description: Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup ℎ of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| cayley.x | ⊢ 𝑋 = (Base‘𝐺) |
| cayley.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
| Ref | Expression |
|---|---|
| cayleyth | ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cayley.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | cayley.h | . . . 4 ⊢ 𝐻 = (SymGrp‘𝑋) | |
| 3 | eqid 2731 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2731 | . . . 4 ⊢ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
| 5 | eqid 2731 | . . . 4 ⊢ ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
| 6 | 1, 2, 3, 4, 5 | cayley 19326 | . . 3 ⊢ (𝐺 ∈ Grp → (ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
| 7 | 6 | simp1d 1142 | . 2 ⊢ (𝐺 ∈ Grp → ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻)) |
| 8 | 6 | simp2d 1143 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
| 9 | 6 | simp3d 1144 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
| 10 | f1oeq1 6751 | . . . 4 ⊢ (𝑓 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ↔ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
| 11 | 10 | rspcev 3572 | . . 3 ⊢ (((𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
| 12 | 8, 9, 11 | syl2anc 584 | . 2 ⊢ (𝐺 ∈ Grp → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
| 13 | oveq2 7354 | . . . . 5 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐻 ↾s 𝑠) = (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
| 14 | 13 | oveq2d 7362 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐺 GrpHom (𝐻 ↾s 𝑠)) = (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
| 15 | f1oeq3 6753 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→𝑠 ↔ 𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
| 16 | 14, 15 | rexeqbidv 3313 | . . 3 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠 ↔ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
| 17 | 16 | rspcev 3572 | . 2 ⊢ ((ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
| 18 | 7, 12, 17 | syl2anc 584 | 1 ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ↦ cmpt 5170 ran crn 5615 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 Grpcgrp 18846 SubGrpcsubg 19033 GrpHom cghm 19124 SymGrpcsymg 19281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-ghm 19125 df-ga 19202 df-symg 19282 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |