Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cayleyth | Structured version Visualization version GIF version |
Description: Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup ℎ of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
cayley.x | ⊢ 𝑋 = (Base‘𝐺) |
cayley.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
Ref | Expression |
---|---|
cayleyth | ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayley.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
2 | cayley.h | . . . 4 ⊢ 𝐻 = (SymGrp‘𝑋) | |
3 | eqid 2738 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2738 | . . . 4 ⊢ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
5 | eqid 2738 | . . . 4 ⊢ ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
6 | 1, 2, 3, 4, 5 | cayley 19022 | . . 3 ⊢ (𝐺 ∈ Grp → (ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
7 | 6 | simp1d 1141 | . 2 ⊢ (𝐺 ∈ Grp → ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻)) |
8 | 6 | simp2d 1142 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
9 | 6 | simp3d 1143 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
10 | f1oeq1 6704 | . . . 4 ⊢ (𝑓 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ↔ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
11 | 10 | rspcev 3561 | . . 3 ⊢ (((𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
12 | 8, 9, 11 | syl2anc 584 | . 2 ⊢ (𝐺 ∈ Grp → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
13 | oveq2 7283 | . . . . 5 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐻 ↾s 𝑠) = (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
14 | 13 | oveq2d 7291 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐺 GrpHom (𝐻 ↾s 𝑠)) = (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
15 | f1oeq3 6706 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→𝑠 ↔ 𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
16 | 14, 15 | rexeqbidv 3337 | . . 3 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠 ↔ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
17 | 16 | rspcev 3561 | . 2 ⊢ ((ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
18 | 7, 12, 17 | syl2anc 584 | 1 ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ↦ cmpt 5157 ran crn 5590 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 +gcplusg 16962 Grpcgrp 18577 SubGrpcsubg 18749 GrpHom cghm 18831 SymGrpcsymg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-tset 16981 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-efmnd 18508 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-ghm 18832 df-ga 18896 df-symg 18975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |