Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cayleyth | Structured version Visualization version GIF version |
Description: Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup ℎ of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
cayley.x | ⊢ 𝑋 = (Base‘𝐺) |
cayley.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
Ref | Expression |
---|---|
cayleyth | ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayley.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
2 | cayley.h | . . . 4 ⊢ 𝐻 = (SymGrp‘𝑋) | |
3 | eqid 2737 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2737 | . . . 4 ⊢ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
5 | eqid 2737 | . . . 4 ⊢ ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) | |
6 | 1, 2, 3, 4, 5 | cayley 18806 | . . 3 ⊢ (𝐺 ∈ Grp → (ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
7 | 6 | simp1d 1144 | . 2 ⊢ (𝐺 ∈ Grp → ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻)) |
8 | 6 | simp2d 1145 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
9 | 6 | simp3d 1146 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
10 | f1oeq1 6649 | . . . 4 ⊢ (𝑓 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ↔ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
11 | 10 | rspcev 3537 | . . 3 ⊢ (((𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) ∧ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))):𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
12 | 8, 9, 11 | syl2anc 587 | . 2 ⊢ (𝐺 ∈ Grp → ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) |
13 | oveq2 7221 | . . . . 5 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐻 ↾s 𝑠) = (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
14 | 13 | oveq2d 7229 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝐺 GrpHom (𝐻 ↾s 𝑠)) = (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))) |
15 | f1oeq3 6651 | . . . 4 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (𝑓:𝑋–1-1-onto→𝑠 ↔ 𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) | |
16 | 14, 15 | rexeqbidv 3314 | . . 3 ⊢ (𝑠 = ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) → (∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠 ↔ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))))) |
17 | 16 | rspcev 3537 | . 2 ⊢ ((ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ ∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))))𝑓:𝑋–1-1-onto→ran (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(+g‘𝐺)𝑎)))) → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
18 | 7, 12, 17 | syl2anc 587 | 1 ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ↦ cmpt 5135 ran crn 5552 –1-1-onto→wf1o 6379 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 ↾s cress 16784 +gcplusg 16802 Grpcgrp 18365 SubGrpcsubg 18537 GrpHom cghm 18619 SymGrpcsymg 18759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-tset 16821 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-efmnd 18296 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-ghm 18620 df-ga 18684 df-symg 18760 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |