![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hvmap1o2 | Structured version Visualization version GIF version |
Description: The vector to functional map provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 27-Mar-2015.) |
Ref | Expression |
---|---|
hvmap1o2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hvmap1o2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hvmap1o2.v | ⊢ 𝑉 = (Base‘𝑈) |
hvmap1o2.z | ⊢ 0 = (0g‘𝑈) |
hvmap1o2.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hvmap1o2.f | ⊢ 𝐹 = (Base‘𝐶) |
hvmap1o2.o | ⊢ 𝑂 = (0g‘𝐶) |
hvmap1o2.m | ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) |
hvmap1o2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hvmap1o2 | ⊢ (𝜑 → 𝑀:(𝑉 ∖ { 0 })–1-1-onto→(𝐹 ∖ {𝑂})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmap1o2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2736 | . . 3 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
3 | hvmap1o2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | hvmap1o2.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
5 | hvmap1o2.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | eqid 2736 | . . 3 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
7 | eqid 2736 | . . 3 ⊢ (LKer‘𝑈) = (LKer‘𝑈) | |
8 | eqid 2736 | . . 3 ⊢ (LDual‘𝑈) = (LDual‘𝑈) | |
9 | eqid 2736 | . . 3 ⊢ (0g‘(LDual‘𝑈)) = (0g‘(LDual‘𝑈)) | |
10 | eqid 2736 | . . 3 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} | |
11 | hvmap1o2.m | . . 3 ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) | |
12 | hvmap1o2.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | hvmap1o 41743 | . 2 ⊢ (𝜑 → 𝑀:(𝑉 ∖ { 0 })–1-1-onto→({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∖ {(0g‘(LDual‘𝑈))})) |
14 | hvmap1o2.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
15 | hvmap1o2.f | . . . . 5 ⊢ 𝐹 = (Base‘𝐶) | |
16 | 1, 2, 14, 15, 3, 6, 7, 10, 12 | lcdvbase 41573 | . . . 4 ⊢ (𝜑 → 𝐹 = {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) |
17 | hvmap1o2.o | . . . . . 6 ⊢ 𝑂 = (0g‘𝐶) | |
18 | 1, 3, 8, 9, 14, 17, 12 | lcd0v2 41592 | . . . . 5 ⊢ (𝜑 → 𝑂 = (0g‘(LDual‘𝑈))) |
19 | 18 | sneqd 4636 | . . . 4 ⊢ (𝜑 → {𝑂} = {(0g‘(LDual‘𝑈))}) |
20 | 16, 19 | difeq12d 4126 | . . 3 ⊢ (𝜑 → (𝐹 ∖ {𝑂}) = ({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∖ {(0g‘(LDual‘𝑈))})) |
21 | f1oeq3 6836 | . . 3 ⊢ ((𝐹 ∖ {𝑂}) = ({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∖ {(0g‘(LDual‘𝑈))}) → (𝑀:(𝑉 ∖ { 0 })–1-1-onto→(𝐹 ∖ {𝑂}) ↔ 𝑀:(𝑉 ∖ { 0 })–1-1-onto→({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∖ {(0g‘(LDual‘𝑈))}))) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (𝑀:(𝑉 ∖ { 0 })–1-1-onto→(𝐹 ∖ {𝑂}) ↔ 𝑀:(𝑉 ∖ { 0 })–1-1-onto→({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∖ {(0g‘(LDual‘𝑈))}))) |
23 | 13, 22 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀:(𝑉 ∖ { 0 })–1-1-onto→(𝐹 ∖ {𝑂})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3435 ∖ cdif 3947 {csn 4624 –1-1-onto→wf1o 6558 ‘cfv 6559 Basecbs 17243 0gc0g 17480 LFnlclfn 39036 LKerclk 39064 LDualcld 39102 HLchlt 39329 LHypclh 39964 DVecHcdvh 41058 ocHcoch 41327 LCDualclcd 41566 HVMapchvm 41736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-riotaBAD 38932 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-of 7694 df-om 7884 df-1st 8010 df-2nd 8011 df-tpos 8247 df-undef 8294 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-2o 8503 df-er 8741 df-map 8864 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-n0 12523 df-z 12610 df-uz 12875 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17244 df-ress 17271 df-plusg 17306 df-mulr 17307 df-sca 17309 df-vsca 17310 df-0g 17482 df-mre 17625 df-mrc 17626 df-acs 17628 df-proset 18336 df-poset 18355 df-plt 18371 df-lub 18387 df-glb 18388 df-join 18389 df-meet 18390 df-p0 18466 df-p1 18467 df-lat 18473 df-clat 18540 df-mgm 18649 df-sgrp 18728 df-mnd 18744 df-submnd 18793 df-grp 18950 df-minusg 18951 df-sbg 18952 df-subg 19137 df-cntz 19331 df-oppg 19360 df-lsm 19650 df-cmn 19796 df-abl 19797 df-mgp 20134 df-rng 20146 df-ur 20175 df-ring 20228 df-oppr 20326 df-dvdsr 20349 df-unit 20350 df-invr 20380 df-dvr 20393 df-nzr 20505 df-rlreg 20686 df-domn 20687 df-drng 20723 df-lmod 20852 df-lss 20922 df-lsp 20962 df-lvec 21094 df-lsatoms 38955 df-lshyp 38956 df-lcv 38998 df-lfl 39037 df-lkr 39065 df-ldual 39103 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-llines 39478 df-lplanes 39479 df-lvols 39480 df-lines 39481 df-psubsp 39483 df-pmap 39484 df-padd 39776 df-lhyp 39968 df-laut 39969 df-ldil 40084 df-ltrn 40085 df-trl 40139 df-tgrp 40723 df-tendo 40735 df-edring 40737 df-dveca 40983 df-disoa 41009 df-dvech 41059 df-dib 41119 df-dic 41153 df-dih 41209 df-doch 41328 df-djh 41375 df-lcdual 41567 df-hvmap 41737 |
This theorem is referenced by: hvmapcl2 41746 |
Copyright terms: Public domain | W3C validator |