Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff1o Structured version   Visualization version   GIF version

Theorem msubff1o 35544
Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff1.v 𝑉 = (mVR‘𝑇)
msubff1.r 𝑅 = (mREx‘𝑇)
msubff1.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
msubff1o (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1-onto→ran 𝑆)

Proof of Theorem msubff1o
StepHypRef Expression
1 msubff1.v . . . 4 𝑉 = (mVR‘𝑇)
2 msubff1.r . . . 4 𝑅 = (mREx‘𝑇)
3 msubff1.s . . . 4 𝑆 = (mSubst‘𝑇)
4 eqid 2729 . . . 4 (mEx‘𝑇) = (mEx‘𝑇)
51, 2, 3, 4msubff1 35543 . . 3 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→((mEx‘𝑇) ↑m (mEx‘𝑇)))
6 f1f1orn 6811 . . 3 ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→((mEx‘𝑇) ↑m (mEx‘𝑇)) → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅m 𝑉)))
75, 6syl 17 . 2 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅m 𝑉)))
81, 2, 3msubrn 35516 . . . 4 ran 𝑆 = (𝑆 “ (𝑅m 𝑉))
9 df-ima 5651 . . . 4 (𝑆 “ (𝑅m 𝑉)) = ran (𝑆 ↾ (𝑅m 𝑉))
108, 9eqtri 2752 . . 3 ran 𝑆 = ran (𝑆 ↾ (𝑅m 𝑉))
11 f1oeq3 6790 . . 3 (ran 𝑆 = ran (𝑆 ↾ (𝑅m 𝑉)) → ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅m 𝑉))))
1210, 11ax-mp 5 . 2 ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅m 𝑉)))
137, 12sylibr 234 1 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1-onto→ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  ran crn 5639  cres 5640  cima 5641  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  m cmap 8799  mVRcmvar 35448  mRExcmrex 35453  mExcmex 35454  mSubstcmsub 35458  mFScmfs 35463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-frmd 18776  df-mrex 35473  df-mex 35474  df-mrsub 35477  df-msub 35478  df-mfs 35483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator