| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msubff1o | Structured version Visualization version GIF version | ||
| Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| msubff1.v | ⊢ 𝑉 = (mVR‘𝑇) |
| msubff1.r | ⊢ 𝑅 = (mREx‘𝑇) |
| msubff1.s | ⊢ 𝑆 = (mSubst‘𝑇) |
| Ref | Expression |
|---|---|
| msubff1o | ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msubff1.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | msubff1.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
| 3 | msubff1.s | . . . 4 ⊢ 𝑆 = (mSubst‘𝑇) | |
| 4 | eqid 2737 | . . . 4 ⊢ (mEx‘𝑇) = (mEx‘𝑇) | |
| 5 | 1, 2, 3, 4 | msubff1 35561 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→((mEx‘𝑇) ↑m (mEx‘𝑇))) |
| 6 | f1f1orn 6859 | . . 3 ⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→((mEx‘𝑇) ↑m (mEx‘𝑇)) → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) |
| 8 | 1, 2, 3 | msubrn 35534 | . . . 4 ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |
| 9 | df-ima 5698 | . . . 4 ⊢ (𝑆 “ (𝑅 ↑m 𝑉)) = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) | |
| 10 | 8, 9 | eqtri 2765 | . . 3 ⊢ ran 𝑆 = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) |
| 11 | f1oeq3 6838 | . . 3 ⊢ (ran 𝑆 = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) → ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉)))) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) |
| 13 | 7, 12 | sylibr 234 | 1 ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ran crn 5686 ↾ cres 5687 “ cima 5688 –1-1→wf1 6558 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 mVRcmvar 35466 mRExcmrex 35471 mExcmex 35472 mSubstcmsub 35476 mFScmfs 35481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-gsum 17487 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-frmd 18862 df-mrex 35491 df-mex 35492 df-mrsub 35495 df-msub 35496 df-mfs 35501 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |