| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msubff1o | Structured version Visualization version GIF version | ||
| Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| msubff1.v | ⊢ 𝑉 = (mVR‘𝑇) |
| msubff1.r | ⊢ 𝑅 = (mREx‘𝑇) |
| msubff1.s | ⊢ 𝑆 = (mSubst‘𝑇) |
| Ref | Expression |
|---|---|
| msubff1o | ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msubff1.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | msubff1.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
| 3 | msubff1.s | . . . 4 ⊢ 𝑆 = (mSubst‘𝑇) | |
| 4 | eqid 2733 | . . . 4 ⊢ (mEx‘𝑇) = (mEx‘𝑇) | |
| 5 | 1, 2, 3, 4 | msubff1 35623 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→((mEx‘𝑇) ↑m (mEx‘𝑇))) |
| 6 | f1f1orn 6781 | . . 3 ⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→((mEx‘𝑇) ↑m (mEx‘𝑇)) → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) |
| 8 | 1, 2, 3 | msubrn 35596 | . . . 4 ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |
| 9 | df-ima 5634 | . . . 4 ⊢ (𝑆 “ (𝑅 ↑m 𝑉)) = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) | |
| 10 | 8, 9 | eqtri 2756 | . . 3 ⊢ ran 𝑆 = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) |
| 11 | f1oeq3 6760 | . . 3 ⊢ (ran 𝑆 = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) → ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉)))) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) |
| 13 | 7, 12 | sylibr 234 | 1 ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ran crn 5622 ↾ cres 5623 “ cima 5624 –1-1→wf1 6485 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 mVRcmvar 35528 mRExcmrex 35533 mExcmex 35534 mSubstcmsub 35538 mFScmfs 35543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-0g 17349 df-gsum 17350 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-frmd 18761 df-mrex 35553 df-mex 35554 df-mrsub 35557 df-msub 35558 df-mfs 35563 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |