![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msubff1o | Structured version Visualization version GIF version |
Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
msubff1.v | β’ π = (mVRβπ) |
msubff1.r | β’ π = (mRExβπ) |
msubff1.s | β’ π = (mSubstβπ) |
Ref | Expression |
---|---|
msubff1o | β’ (π β mFS β (π βΎ (π βm π)):(π βm π)β1-1-ontoβran π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubff1.v | . . . 4 β’ π = (mVRβπ) | |
2 | msubff1.r | . . . 4 β’ π = (mRExβπ) | |
3 | msubff1.s | . . . 4 β’ π = (mSubstβπ) | |
4 | eqid 2732 | . . . 4 β’ (mExβπ) = (mExβπ) | |
5 | 1, 2, 3, 4 | msubff1 34833 | . . 3 β’ (π β mFS β (π βΎ (π βm π)):(π βm π)β1-1β((mExβπ) βm (mExβπ))) |
6 | f1f1orn 6844 | . . 3 β’ ((π βΎ (π βm π)):(π βm π)β1-1β((mExβπ) βm (mExβπ)) β (π βΎ (π βm π)):(π βm π)β1-1-ontoβran (π βΎ (π βm π))) | |
7 | 5, 6 | syl 17 | . 2 β’ (π β mFS β (π βΎ (π βm π)):(π βm π)β1-1-ontoβran (π βΎ (π βm π))) |
8 | 1, 2, 3 | msubrn 34806 | . . . 4 β’ ran π = (π β (π βm π)) |
9 | df-ima 5689 | . . . 4 β’ (π β (π βm π)) = ran (π βΎ (π βm π)) | |
10 | 8, 9 | eqtri 2760 | . . 3 β’ ran π = ran (π βΎ (π βm π)) |
11 | f1oeq3 6823 | . . 3 β’ (ran π = ran (π βΎ (π βm π)) β ((π βΎ (π βm π)):(π βm π)β1-1-ontoβran π β (π βΎ (π βm π)):(π βm π)β1-1-ontoβran (π βΎ (π βm π)))) | |
12 | 10, 11 | ax-mp 5 | . 2 β’ ((π βΎ (π βm π)):(π βm π)β1-1-ontoβran π β (π βΎ (π βm π)):(π βm π)β1-1-ontoβran (π βΎ (π βm π))) |
13 | 7, 12 | sylibr 233 | 1 β’ (π β mFS β (π βΎ (π βm π)):(π βm π)β1-1-ontoβran π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 ran crn 5677 βΎ cres 5678 β cima 5679 β1-1βwf1 6540 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7411 βm cmap 8822 mVRcmvar 34738 mRExcmrex 34743 mExcmex 34744 mSubstcmsub 34748 mFScmfs 34753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-0g 17391 df-gsum 17392 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-frmd 18766 df-mrex 34763 df-mex 34764 df-mrsub 34767 df-msub 34768 df-mfs 34773 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |