![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubff1o | Structured version Visualization version GIF version |
Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrsubvr.v | ⊢ 𝑉 = (mVR‘𝑇) |
mrsubvr.r | ⊢ 𝑅 = (mREx‘𝑇) |
mrsubvr.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
Ref | Expression |
---|---|
mrsubff1o | ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrsubvr.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | mrsubvr.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
3 | mrsubvr.s | . . . 4 ⊢ 𝑆 = (mRSubst‘𝑇) | |
4 | 1, 2, 3 | mrsubff1 35482 | . . 3 ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅)) |
5 | f1f1orn 6873 | . . 3 ⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅) → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) |
7 | 1, 2, 3 | mrsubrn 35481 | . . . 4 ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |
8 | df-ima 5713 | . . . 4 ⊢ (𝑆 “ (𝑅 ↑m 𝑉)) = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) | |
9 | 7, 8 | eqtri 2768 | . . 3 ⊢ ran 𝑆 = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) |
10 | f1oeq3 6852 | . . 3 ⊢ (ran 𝑆 = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) → ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉)))) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) |
12 | 6, 11 | sylibr 234 | 1 ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ran crn 5701 ↾ cres 5702 “ cima 5703 –1-1→wf1 6570 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 mVRcmvar 35429 mRExcmrex 35434 mRSubstcmrsub 35438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-frmd 18884 df-mrex 35454 df-mrsub 35458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |