Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubff1o | Structured version Visualization version GIF version |
Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrsubvr.v | ⊢ 𝑉 = (mVR‘𝑇) |
mrsubvr.r | ⊢ 𝑅 = (mREx‘𝑇) |
mrsubvr.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
Ref | Expression |
---|---|
mrsubff1o | ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrsubvr.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | mrsubvr.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
3 | mrsubvr.s | . . . 4 ⊢ 𝑆 = (mRSubst‘𝑇) | |
4 | 1, 2, 3 | mrsubff1 33611 | . . 3 ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅)) |
5 | f1f1orn 6764 | . . 3 ⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅) → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) |
7 | 1, 2, 3 | mrsubrn 33610 | . . . 4 ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |
8 | df-ima 5620 | . . . 4 ⊢ (𝑆 “ (𝑅 ↑m 𝑉)) = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) | |
9 | 7, 8 | eqtri 2764 | . . 3 ⊢ ran 𝑆 = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) |
10 | f1oeq3 6743 | . . 3 ⊢ (ran 𝑆 = ran (𝑆 ↾ (𝑅 ↑m 𝑉)) → ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉)))) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅 ↑m 𝑉))) |
12 | 6, 11 | sylibr 233 | 1 ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ran crn 5608 ↾ cres 5609 “ cima 5610 –1-1→wf1 6462 –1-1-onto→wf1o 6464 ‘cfv 6465 (class class class)co 7316 ↑m cmap 8664 mVRcmvar 33558 mRExcmrex 33563 mRSubstcmrsub 33567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 df-seq 13801 df-hash 14124 df-word 14296 df-concat 14352 df-s1 14378 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-0g 17226 df-gsum 17227 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-frmd 18561 df-mrex 33583 df-mrsub 33587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |