Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssfid | Structured version Visualization version GIF version |
Description: A subset of a finite set is finite, deduction version of ssfi 8851. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
ssfid.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
ssfid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
ssfid | ⊢ (𝜑 → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | ssfid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | ssfi 8851 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → 𝐵 ∈ Fin) |
Copyright terms: Public domain | W3C validator |