MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmfisuppfi Structured version   Visualization version   GIF version

Theorem fdmfisuppfi 9386
Description: The support of a function with a finite domain is always finite. (Contributed by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
fdmfisuppfi.f (𝜑𝐹:𝐷𝑅)
fdmfisuppfi.d (𝜑𝐷 ∈ Fin)
fdmfisuppfi.z (𝜑𝑍𝑉)
Assertion
Ref Expression
fdmfisuppfi (𝜑 → (𝐹 supp 𝑍) ∈ Fin)

Proof of Theorem fdmfisuppfi
StepHypRef Expression
1 fdmfisuppfi.f . . . 4 (𝜑𝐹:𝐷𝑅)
2 fdmfisuppfi.d . . . 4 (𝜑𝐷 ∈ Fin)
31, 2fexd 7233 . . 3 (𝜑𝐹 ∈ V)
4 fdmfisuppfi.z . . 3 (𝜑𝑍𝑉)
5 suppimacnv 8170 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑉) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
63, 4, 5syl2anc 583 . 2 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
72, 1fisuppfi 9384 . 2 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
86, 7eqeltrd 2828 1 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3469  cdif 3941  {csn 4624  ccnv 5671  cima 5675  wf 6538  (class class class)co 7414   supp csupp 8157  Fincfn 8953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-supp 8158  df-1o 8478  df-en 8954  df-fin 8957
This theorem is referenced by:  fdmfifsupp  9387  fndmfisuppfi  9389
  Copyright terms: Public domain W3C validator