MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmfisuppfi Structured version   Visualization version   GIF version

Theorem fdmfisuppfi 9371
Description: The support of a function with a finite domain is always finite. (Contributed by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
fdmfisuppfi.f (𝜑𝐹:𝐷𝑅)
fdmfisuppfi.d (𝜑𝐷 ∈ Fin)
fdmfisuppfi.z (𝜑𝑍𝑉)
Assertion
Ref Expression
fdmfisuppfi (𝜑 → (𝐹 supp 𝑍) ∈ Fin)

Proof of Theorem fdmfisuppfi
StepHypRef Expression
1 fdmfisuppfi.f . . . 4 (𝜑𝐹:𝐷𝑅)
2 fdmfisuppfi.d . . . 4 (𝜑𝐷 ∈ Fin)
31, 2fexd 7228 . . 3 (𝜑𝐹 ∈ V)
4 fdmfisuppfi.z . . 3 (𝜑𝑍𝑉)
5 suppimacnv 8158 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑉) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
72, 1fisuppfi 9369 . 2 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
86, 7eqeltrd 2833 1 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  cdif 3945  {csn 4628  ccnv 5675  cima 5679  wf 6539  (class class class)co 7408   supp csupp 8145  Fincfn 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-supp 8146  df-1o 8465  df-en 8939  df-fin 8942
This theorem is referenced by:  fdmfifsupp  9372  fndmfisuppfi  9374
  Copyright terms: Public domain W3C validator