![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coscn | Structured version Visualization version GIF version |
Description: Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
Ref | Expression |
---|---|
coscn | ⊢ cos ∈ (ℂ–cn→ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cos 15953 | . 2 ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
2 | eqid 2736 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
3 | 2 | addcn 24228 | . . . . . . . . 9 ⊢ + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
5 | efcn 25802 | . . . . . . . . . 10 ⊢ exp ∈ (ℂ–cn→ℂ) | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → exp ∈ (ℂ–cn→ℂ)) |
7 | ax-icn 11110 | . . . . . . . . . 10 ⊢ i ∈ ℂ | |
8 | eqid 2736 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥)) | |
9 | 8 | mulc1cncf 24268 | . . . . . . . . . 10 ⊢ (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
10 | 7, 9 | mp1i 13 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
11 | 6, 10 | cncfmpt1f 24277 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
12 | negicn 11402 | . . . . . . . . . 10 ⊢ -i ∈ ℂ | |
13 | eqid 2736 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥)) | |
14 | 13 | mulc1cncf 24268 | . . . . . . . . . 10 ⊢ (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
15 | 12, 14 | mp1i 13 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
16 | 6, 15 | cncfmpt1f 24277 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
17 | 2, 4, 11, 16 | cncfmpt2f 24278 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ)) |
18 | cncff 24256 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
20 | eqid 2736 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) | |
21 | 20 | fmpt 7058 | . . . . . 6 ⊢ (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
22 | 19, 21 | sylibr 233 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ) |
23 | eqidd 2737 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) | |
24 | eqidd 2737 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2))) | |
25 | oveq1 7364 | . . . . 5 ⊢ (𝑦 = ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) → (𝑦 / 2) = (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
26 | 22, 23, 24, 25 | fmptcof 7076 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))) |
27 | 2cn 12228 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
28 | 2ne0 12257 | . . . . . . 7 ⊢ 2 ≠ 0 | |
29 | eqid 2736 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2)) | |
30 | 29 | divccncf 24269 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ)) |
31 | 27, 28, 30 | mp2an 690 | . . . . . 6 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ) |
32 | 31 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ)) |
33 | 17, 32 | cncfco 24270 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ)) |
34 | 26, 33 | eqeltrrd 2839 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ)) |
35 | 34 | mptru 1548 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ) |
36 | 1, 35 | eqeltri 2834 | 1 ⊢ cos ∈ (ℂ–cn→ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1542 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ↦ cmpt 5188 ∘ ccom 5637 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 0cc0 11051 ici 11053 + caddc 11054 · cmul 11056 -cneg 11386 / cdiv 11812 2c2 12208 expce 15944 cosccos 15947 TopOpenctopn 17303 ℂfldccnfld 20796 Cn ccn 22575 ×t ctx 22911 –cn→ccncf 24239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-cos 15953 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 |
This theorem is referenced by: recosf1o 25891 dvtanlem 36127 dvsinax 44144 itgsin0pilem1 44181 itgsinexplem1 44185 itgcoscmulx 44200 itgsincmulx 44205 dirkeritg 44333 dirkercncflem2 44335 fourierdlem16 44354 fourierdlem22 44360 fourierdlem39 44377 fourierdlem58 44395 fourierdlem62 44399 fourierdlem73 44410 fourierdlem83 44420 sqwvfoura 44459 |
Copyright terms: Public domain | W3C validator |