![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coscn | Structured version Visualization version GIF version |
Description: Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
Ref | Expression |
---|---|
coscn | ⊢ cos ∈ (ℂ–cn→ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cos 15284 | . 2 ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
2 | eqid 2779 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
3 | 2 | addcn 23176 | . . . . . . . . 9 ⊢ + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
5 | efcn 24734 | . . . . . . . . . 10 ⊢ exp ∈ (ℂ–cn→ℂ) | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → exp ∈ (ℂ–cn→ℂ)) |
7 | ax-icn 10394 | . . . . . . . . . 10 ⊢ i ∈ ℂ | |
8 | eqid 2779 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥)) | |
9 | 8 | mulc1cncf 23216 | . . . . . . . . . 10 ⊢ (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
10 | 7, 9 | mp1i 13 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
11 | 6, 10 | cncfmpt1f 23224 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
12 | negicn 10687 | . . . . . . . . . 10 ⊢ -i ∈ ℂ | |
13 | eqid 2779 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥)) | |
14 | 13 | mulc1cncf 23216 | . . . . . . . . . 10 ⊢ (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
15 | 12, 14 | mp1i 13 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
16 | 6, 15 | cncfmpt1f 23224 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
17 | 2, 4, 11, 16 | cncfmpt2f 23225 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ)) |
18 | cncff 23204 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
20 | eqid 2779 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) | |
21 | 20 | fmpt 6697 | . . . . . 6 ⊢ (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
22 | 19, 21 | sylibr 226 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ) |
23 | eqidd 2780 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) | |
24 | eqidd 2780 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2))) | |
25 | oveq1 6983 | . . . . 5 ⊢ (𝑦 = ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) → (𝑦 / 2) = (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
26 | 22, 23, 24, 25 | fmptcof 6715 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))) |
27 | 2cn 11515 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
28 | 2ne0 11551 | . . . . . . 7 ⊢ 2 ≠ 0 | |
29 | eqid 2779 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2)) | |
30 | 29 | divccncf 23217 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ)) |
31 | 27, 28, 30 | mp2an 679 | . . . . . 6 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ) |
32 | 31 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ)) |
33 | 17, 32 | cncfco 23218 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ)) |
34 | 26, 33 | eqeltrrd 2868 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ)) |
35 | 34 | mptru 1514 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ) |
36 | 1, 35 | eqeltri 2863 | 1 ⊢ cos ∈ (ℂ–cn→ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1508 ∈ wcel 2050 ≠ wne 2968 ∀wral 3089 ↦ cmpt 5008 ∘ ccom 5411 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 ℂcc 10333 0cc0 10335 ici 10337 + caddc 10338 · cmul 10340 -cneg 10671 / cdiv 11098 2c2 11495 expce 15275 cosccos 15278 TopOpenctopn 16551 ℂfldccnfld 20247 Cn ccn 21536 ×t ctx 21872 –cn→ccncf 23187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-pm 8209 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-fi 8670 df-sup 8701 df-inf 8702 df-oi 8769 df-card 9162 df-cda 9388 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-ico 12560 df-icc 12561 df-fz 12709 df-fzo 12850 df-fl 12977 df-seq 13185 df-exp 13245 df-fac 13449 df-bc 13478 df-hash 13506 df-shft 14287 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-limsup 14689 df-clim 14706 df-rlim 14707 df-sum 14904 df-ef 15281 df-cos 15284 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-starv 16436 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-unif 16444 df-hom 16445 df-cco 16446 df-rest 16552 df-topn 16553 df-0g 16571 df-gsum 16572 df-topgen 16573 df-pt 16574 df-prds 16577 df-xrs 16631 df-qtop 16636 df-imas 16637 df-xps 16639 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-mulg 18012 df-cntz 18218 df-cmn 18668 df-psmet 20239 df-xmet 20240 df-met 20241 df-bl 20242 df-mopn 20243 df-fbas 20244 df-fg 20245 df-cnfld 20248 df-top 21206 df-topon 21223 df-topsp 21245 df-bases 21258 df-cld 21331 df-ntr 21332 df-cls 21333 df-nei 21410 df-lp 21448 df-perf 21449 df-cn 21539 df-cnp 21540 df-haus 21627 df-tx 21874 df-hmeo 22067 df-fil 22158 df-fm 22250 df-flim 22251 df-flf 22252 df-xms 22633 df-ms 22634 df-tms 22635 df-cncf 23189 df-limc 24167 df-dv 24168 |
This theorem is referenced by: recosf1o 24820 dvtanlem 34379 dvsinax 41625 itgsin0pilem1 41663 itgsinexplem1 41667 itgcoscmulx 41682 itgsincmulx 41687 dirkeritg 41816 dirkercncflem2 41818 fourierdlem16 41837 fourierdlem22 41843 fourierdlem39 41860 fourierdlem58 41878 fourierdlem62 41882 fourierdlem73 41893 fourierdlem83 41903 sqwvfoura 41942 |
Copyright terms: Public domain | W3C validator |