MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1k Structured version   Visualization version   GIF version

Theorem cnmpt1k 23567
Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt1k.m (𝜑𝑀 ∈ (TopOn‘𝑊))
cnmpt1k.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
cnmpt1k.b (𝜑 → (𝑦𝑌 ↦ (𝑧𝑍𝐵)) ∈ (𝐾 Cn (𝑀ko 𝐿)))
cnmpt1k.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt1k (𝜑 → (𝑦𝑌 ↦ (𝑥𝑋𝐶)) ∈ (𝐾 Cn (𝑀ko 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑧,𝑍,𝑦   𝑧,𝐴   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑧,𝐶   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥)   𝐵(𝑦,𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑧)   𝐾(𝑧)   𝐿(𝑧)   𝑀(𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem cnmpt1k
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cnmptk1.j . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmptk1.l . . . . . . 7 (𝜑𝐿 ∈ (TopOn‘𝑍))
3 cnmpt1k.a . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
4 cnf2 23134 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐴):𝑋𝑍)
51, 2, 3, 4syl3anc 1373 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋𝑍)
6 eqid 2729 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
76fmpt 7044 . . . . . 6 (∀𝑥𝑋 𝐴𝑍 ↔ (𝑥𝑋𝐴):𝑋𝑍)
85, 7sylibr 234 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐴𝑍)
98adantr 480 . . . 4 ((𝜑𝑦𝑌) → ∀𝑥𝑋 𝐴𝑍)
10 eqidd 2730 . . . 4 ((𝜑𝑦𝑌) → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
11 eqidd 2730 . . . 4 ((𝜑𝑦𝑌) → (𝑧𝑍𝐵) = (𝑧𝑍𝐵))
12 cnmpt1k.c . . . 4 (𝑧 = 𝐴𝐵 = 𝐶)
139, 10, 11, 12fmptcof 7064 . . 3 ((𝜑𝑦𝑌) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
1413mpteq2dva 5185 . 2 (𝜑 → (𝑦𝑌 ↦ ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴))) = (𝑦𝑌 ↦ (𝑥𝑋𝐶)))
15 cnmptk1.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
16 cnmpt1k.b . . 3 (𝜑 → (𝑦𝑌 ↦ (𝑧𝑍𝐵)) ∈ (𝐾 Cn (𝑀ko 𝐿)))
17 topontop 22798 . . . . 5 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
182, 17syl 17 . . . 4 (𝜑𝐿 ∈ Top)
19 cnmpt1k.m . . . . 5 (𝜑𝑀 ∈ (TopOn‘𝑊))
20 topontop 22798 . . . . 5 (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top)
2119, 20syl 17 . . . 4 (𝜑𝑀 ∈ Top)
22 eqid 2729 . . . . 5 (𝑀ko 𝐿) = (𝑀ko 𝐿)
2322xkotopon 23485 . . . 4 ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
2418, 21, 23syl2anc 584 . . 3 (𝜑 → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
2521, 3xkoco1cn 23542 . . 3 (𝜑 → (𝑤 ∈ (𝐿 Cn 𝑀) ↦ (𝑤 ∘ (𝑥𝑋𝐴))) ∈ ((𝑀ko 𝐿) Cn (𝑀ko 𝐽)))
26 coeq1 5800 . . 3 (𝑤 = (𝑧𝑍𝐵) → (𝑤 ∘ (𝑥𝑋𝐴)) = ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴)))
2715, 16, 24, 25, 26cnmpt11 23548 . 2 (𝜑 → (𝑦𝑌 ↦ ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴))) ∈ (𝐾 Cn (𝑀ko 𝐽)))
2814, 27eqeltrrd 2829 1 (𝜑 → (𝑦𝑌 ↦ (𝑥𝑋𝐶)) ∈ (𝐾 Cn (𝑀ko 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cmpt 5173  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  Topctop 22778  TopOnctopon 22795   Cn ccn 23109  ko cxko 23446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-map 8755  df-en 8873  df-dom 8874  df-fin 8876  df-fi 9301  df-rest 17326  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-cn 23112  df-cmp 23272  df-xko 23448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator