MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1k Structured version   Visualization version   GIF version

Theorem cnmpt1k 23606
Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt1k.m (𝜑𝑀 ∈ (TopOn‘𝑊))
cnmpt1k.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
cnmpt1k.b (𝜑 → (𝑦𝑌 ↦ (𝑧𝑍𝐵)) ∈ (𝐾 Cn (𝑀ko 𝐿)))
cnmpt1k.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt1k (𝜑 → (𝑦𝑌 ↦ (𝑥𝑋𝐶)) ∈ (𝐾 Cn (𝑀ko 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑧,𝑍,𝑦   𝑧,𝐴   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑧,𝐶   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥)   𝐵(𝑦,𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑧)   𝐾(𝑧)   𝐿(𝑧)   𝑀(𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem cnmpt1k
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cnmptk1.j . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmptk1.l . . . . . . 7 (𝜑𝐿 ∈ (TopOn‘𝑍))
3 cnmpt1k.a . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
4 cnf2 23173 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐴):𝑋𝑍)
51, 2, 3, 4syl3anc 1368 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋𝑍)
6 eqid 2728 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
76fmpt 7125 . . . . . 6 (∀𝑥𝑋 𝐴𝑍 ↔ (𝑥𝑋𝐴):𝑋𝑍)
85, 7sylibr 233 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐴𝑍)
98adantr 479 . . . 4 ((𝜑𝑦𝑌) → ∀𝑥𝑋 𝐴𝑍)
10 eqidd 2729 . . . 4 ((𝜑𝑦𝑌) → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
11 eqidd 2729 . . . 4 ((𝜑𝑦𝑌) → (𝑧𝑍𝐵) = (𝑧𝑍𝐵))
12 cnmpt1k.c . . . 4 (𝑧 = 𝐴𝐵 = 𝐶)
139, 10, 11, 12fmptcof 7145 . . 3 ((𝜑𝑦𝑌) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
1413mpteq2dva 5252 . 2 (𝜑 → (𝑦𝑌 ↦ ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴))) = (𝑦𝑌 ↦ (𝑥𝑋𝐶)))
15 cnmptk1.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
16 cnmpt1k.b . . 3 (𝜑 → (𝑦𝑌 ↦ (𝑧𝑍𝐵)) ∈ (𝐾 Cn (𝑀ko 𝐿)))
17 topontop 22835 . . . . 5 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
182, 17syl 17 . . . 4 (𝜑𝐿 ∈ Top)
19 cnmpt1k.m . . . . 5 (𝜑𝑀 ∈ (TopOn‘𝑊))
20 topontop 22835 . . . . 5 (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top)
2119, 20syl 17 . . . 4 (𝜑𝑀 ∈ Top)
22 eqid 2728 . . . . 5 (𝑀ko 𝐿) = (𝑀ko 𝐿)
2322xkotopon 23524 . . . 4 ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
2418, 21, 23syl2anc 582 . . 3 (𝜑 → (𝑀ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
2521, 3xkoco1cn 23581 . . 3 (𝜑 → (𝑤 ∈ (𝐿 Cn 𝑀) ↦ (𝑤 ∘ (𝑥𝑋𝐴))) ∈ ((𝑀ko 𝐿) Cn (𝑀ko 𝐽)))
26 coeq1 5864 . . 3 (𝑤 = (𝑧𝑍𝐵) → (𝑤 ∘ (𝑥𝑋𝐴)) = ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴)))
2715, 16, 24, 25, 26cnmpt11 23587 . 2 (𝜑 → (𝑦𝑌 ↦ ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴))) ∈ (𝐾 Cn (𝑀ko 𝐽)))
2814, 27eqeltrrd 2830 1 (𝜑 → (𝑦𝑌 ↦ (𝑥𝑋𝐶)) ∈ (𝐾 Cn (𝑀ko 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3058  cmpt 5235  ccom 5686  wf 6549  cfv 6553  (class class class)co 7426  Topctop 22815  TopOnctopon 22832   Cn ccn 23148  ko cxko 23485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-fin 8974  df-fi 9442  df-rest 17411  df-topgen 17432  df-top 22816  df-topon 22833  df-bases 22869  df-cn 23151  df-cmp 23311  df-xko 23487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator