| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1k | Structured version Visualization version GIF version | ||
| Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmptk1.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| cnmpt1k.m | ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) |
| cnmpt1k.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) |
| cnmpt1k.b | ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐿))) |
| cnmpt1k.c | ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cnmpt1k | ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptk1.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | cnmptk1.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
| 3 | cnmpt1k.a | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) | |
| 4 | cnf2 23143 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) |
| 6 | eqid 2730 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | |
| 7 | 6 | fmpt 7085 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍 ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) |
| 8 | 5, 7 | sylibr 234 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍) |
| 10 | eqidd 2731 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
| 11 | eqidd 2731 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑧 ∈ 𝑍 ↦ 𝐵) = (𝑧 ∈ 𝑍 ↦ 𝐵)) | |
| 12 | cnmpt1k.c | . . . 4 ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) | |
| 13 | 9, 10, 11, 12 | fmptcof 7105 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
| 14 | 13 | mpteq2dva 5203 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶))) |
| 15 | cnmptk1.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 16 | cnmpt1k.b | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐿))) | |
| 17 | topontop 22807 | . . . . 5 ⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) | |
| 18 | 2, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ Top) |
| 19 | cnmpt1k.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) | |
| 20 | topontop 22807 | . . . . 5 ⊢ (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Top) |
| 22 | eqid 2730 | . . . . 5 ⊢ (𝑀 ↑ko 𝐿) = (𝑀 ↑ko 𝐿) | |
| 23 | 22 | xkotopon 23494 | . . . 4 ⊢ ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀 ↑ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀))) |
| 24 | 18, 21, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀 ↑ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀))) |
| 25 | 21, 3 | xkoco1cn 23551 | . . 3 ⊢ (𝜑 → (𝑤 ∈ (𝐿 Cn 𝑀) ↦ (𝑤 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) ∈ ((𝑀 ↑ko 𝐿) Cn (𝑀 ↑ko 𝐽))) |
| 26 | coeq1 5824 | . . 3 ⊢ (𝑤 = (𝑧 ∈ 𝑍 ↦ 𝐵) → (𝑤 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) | |
| 27 | 15, 16, 24, 25, 26 | cnmpt11 23557 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) |
| 28 | 14, 27 | eqeltrrd 2830 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ↦ cmpt 5191 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Topctop 22787 TopOnctopon 22804 Cn ccn 23118 ↑ko cxko 23455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-1o 8437 df-2o 8438 df-map 8804 df-en 8922 df-dom 8923 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-cn 23121 df-cmp 23281 df-xko 23457 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |