Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt1k | Structured version Visualization version GIF version |
Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
cnmptk1.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
cnmpt1k.m | ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) |
cnmpt1k.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) |
cnmpt1k.b | ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐿))) |
cnmpt1k.c | ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cnmpt1k | ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptk1.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | cnmptk1.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
3 | cnmpt1k.a | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) | |
4 | cnf2 22400 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) |
6 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | |
7 | 6 | fmpt 6984 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍 ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) |
8 | 5, 7 | sylibr 233 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍) |
10 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
11 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑧 ∈ 𝑍 ↦ 𝐵) = (𝑧 ∈ 𝑍 ↦ 𝐵)) | |
12 | cnmpt1k.c | . . . 4 ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) | |
13 | 9, 10, 11, 12 | fmptcof 7002 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
14 | 13 | mpteq2dva 5174 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶))) |
15 | cnmptk1.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
16 | cnmpt1k.b | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐿))) | |
17 | topontop 22062 | . . . . 5 ⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) | |
18 | 2, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ Top) |
19 | cnmpt1k.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) | |
20 | topontop 22062 | . . . . 5 ⊢ (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Top) |
22 | eqid 2738 | . . . . 5 ⊢ (𝑀 ↑ko 𝐿) = (𝑀 ↑ko 𝐿) | |
23 | 22 | xkotopon 22751 | . . . 4 ⊢ ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀 ↑ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀))) |
24 | 18, 21, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀 ↑ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀))) |
25 | 21, 3 | xkoco1cn 22808 | . . 3 ⊢ (𝜑 → (𝑤 ∈ (𝐿 Cn 𝑀) ↦ (𝑤 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) ∈ ((𝑀 ↑ko 𝐿) Cn (𝑀 ↑ko 𝐽))) |
26 | coeq1 5766 | . . 3 ⊢ (𝑤 = (𝑧 ∈ 𝑍 ↦ 𝐵) → (𝑤 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) | |
27 | 15, 16, 24, 25, 26 | cnmpt11 22814 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) |
28 | 14, 27 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ↦ cmpt 5157 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Topctop 22042 TopOnctopon 22059 Cn ccn 22375 ↑ko cxko 22712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-fin 8737 df-fi 9170 df-rest 17133 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cn 22378 df-cmp 22538 df-xko 22714 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |