![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1k | Structured version Visualization version GIF version |
Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
cnmptk1.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
cnmpt1k.m | ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) |
cnmpt1k.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) |
cnmpt1k.b | ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐿))) |
cnmpt1k.c | ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cnmpt1k | ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptk1.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | cnmptk1.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
3 | cnmpt1k.a | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) | |
4 | cnf2 23278 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) |
6 | eqid 2740 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | |
7 | 6 | fmpt 7144 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍 ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) |
8 | 5, 7 | sylibr 234 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍) |
10 | eqidd 2741 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
11 | eqidd 2741 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑧 ∈ 𝑍 ↦ 𝐵) = (𝑧 ∈ 𝑍 ↦ 𝐵)) | |
12 | cnmpt1k.c | . . . 4 ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) | |
13 | 9, 10, 11, 12 | fmptcof 7164 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
14 | 13 | mpteq2dva 5266 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶))) |
15 | cnmptk1.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
16 | cnmpt1k.b | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐿))) | |
17 | topontop 22940 | . . . . 5 ⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) | |
18 | 2, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ Top) |
19 | cnmpt1k.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) | |
20 | topontop 22940 | . . . . 5 ⊢ (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Top) |
22 | eqid 2740 | . . . . 5 ⊢ (𝑀 ↑ko 𝐿) = (𝑀 ↑ko 𝐿) | |
23 | 22 | xkotopon 23629 | . . . 4 ⊢ ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀 ↑ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀))) |
24 | 18, 21, 23 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑀 ↑ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀))) |
25 | 21, 3 | xkoco1cn 23686 | . . 3 ⊢ (𝜑 → (𝑤 ∈ (𝐿 Cn 𝑀) ↦ (𝑤 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) ∈ ((𝑀 ↑ko 𝐿) Cn (𝑀 ↑ko 𝐽))) |
26 | coeq1 5882 | . . 3 ⊢ (𝑤 = (𝑧 ∈ 𝑍 ↦ 𝐵) → (𝑤 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) | |
27 | 15, 16, 24, 25, 26 | cnmpt11 23692 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) |
28 | 14, 27 | eqeltrrd 2845 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ↑ko 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Topctop 22920 TopOnctopon 22937 Cn ccn 23253 ↑ko cxko 23590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-2o 8523 df-map 8886 df-en 9004 df-dom 9005 df-fin 9007 df-fi 9480 df-rest 17482 df-topgen 17503 df-top 22921 df-topon 22938 df-bases 22974 df-cn 23256 df-cmp 23416 df-xko 23592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |