![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptk1 | Structured version Visualization version GIF version |
Description: The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
cnmptk1.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
cnmptk1.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) |
cnmptk1.b | ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) |
cnmptk1.c | ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cnmptk1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptk1.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
3 | cnmptk1.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘𝑍)) |
5 | cnmptk1.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
6 | topontop 22770 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | |
7 | 1, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ Top) |
8 | topontop 22770 | . . . . . . . . . 10 ⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) | |
9 | 3, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ Top) |
10 | eqid 2726 | . . . . . . . . . 10 ⊢ (𝐿 ↑ko 𝐾) = (𝐿 ↑ko 𝐾) | |
11 | 10 | xkotopon 23459 | . . . . . . . . 9 ⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
12 | 7, 9, 11 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
13 | cnmptk1.a | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) | |
14 | cnf2 23108 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) | |
15 | 5, 12, 13, 14 | syl3anc 1368 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
16 | 15 | fvmptelcdm 7108 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
17 | cnf2 23108 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) | |
18 | 2, 4, 16, 17 | syl3anc 1368 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
19 | eqid 2726 | . . . . . 6 ⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) | |
20 | 19 | fmpt 7105 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
21 | 18, 20 | sylibr 233 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍) |
22 | eqidd 2727 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴)) | |
23 | eqidd 2727 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑍 ↦ 𝐵) = (𝑧 ∈ 𝑍 ↦ 𝐵)) | |
24 | cnmptk1.c | . . . 4 ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) | |
25 | 21, 22, 23, 24 | fmptcof 7124 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴)) = (𝑦 ∈ 𝑌 ↦ 𝐶)) |
26 | 25 | mpteq2dva 5241 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) |
27 | cnmptk1.b | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) | |
28 | 7, 27 | xkoco2cn 23517 | . . 3 ⊢ (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ 𝑤)) ∈ ((𝐿 ↑ko 𝐾) Cn (𝑀 ↑ko 𝐾))) |
29 | coeq2 5852 | . . 3 ⊢ (𝑤 = (𝑦 ∈ 𝑌 ↦ 𝐴) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ 𝑤) = ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) | |
30 | 5, 13, 12, 28, 29 | cnmpt11 23522 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
31 | 26, 30 | eqeltrrd 2828 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ↦ cmpt 5224 ∘ ccom 5673 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 Topctop 22750 TopOnctopon 22767 Cn ccn 23083 ↑ko cxko 23420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-fin 8945 df-fi 9408 df-rest 17377 df-topgen 17398 df-top 22751 df-topon 22768 df-bases 22804 df-cn 23086 df-cmp 23246 df-xko 23422 |
This theorem is referenced by: cnmpt2k 23547 |
Copyright terms: Public domain | W3C validator |