Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmptk1 | Structured version Visualization version GIF version |
Description: The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
cnmptk1.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
cnmptk1.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) |
cnmptk1.b | ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) |
cnmptk1.c | ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cnmptk1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptk1.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
3 | cnmptk1.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘𝑍)) |
5 | cnmptk1.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
6 | topontop 21970 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | |
7 | 1, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ Top) |
8 | topontop 21970 | . . . . . . . . . 10 ⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) | |
9 | 3, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ Top) |
10 | eqid 2738 | . . . . . . . . . 10 ⊢ (𝐿 ↑ko 𝐾) = (𝐿 ↑ko 𝐾) | |
11 | 10 | xkotopon 22659 | . . . . . . . . 9 ⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
12 | 7, 9, 11 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
13 | cnmptk1.a | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) | |
14 | cnf2 22308 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) | |
15 | 5, 12, 13, 14 | syl3anc 1369 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
16 | 15 | fvmptelrn 6969 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
17 | cnf2 22308 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) | |
18 | 2, 4, 16, 17 | syl3anc 1369 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
19 | eqid 2738 | . . . . . 6 ⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) | |
20 | 19 | fmpt 6966 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
21 | 18, 20 | sylibr 233 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍) |
22 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴)) | |
23 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑍 ↦ 𝐵) = (𝑧 ∈ 𝑍 ↦ 𝐵)) | |
24 | cnmptk1.c | . . . 4 ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) | |
25 | 21, 22, 23, 24 | fmptcof 6984 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴)) = (𝑦 ∈ 𝑌 ↦ 𝐶)) |
26 | 25 | mpteq2dva 5170 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) |
27 | cnmptk1.b | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) | |
28 | 7, 27 | xkoco2cn 22717 | . . 3 ⊢ (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ 𝑤)) ∈ ((𝐿 ↑ko 𝐾) Cn (𝑀 ↑ko 𝐾))) |
29 | coeq2 5756 | . . 3 ⊢ (𝑤 = (𝑦 ∈ 𝑌 ↦ 𝐴) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ 𝑤) = ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) | |
30 | 5, 13, 12, 28, 29 | cnmpt11 22722 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
31 | 26, 30 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ↦ cmpt 5153 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Topctop 21950 TopOnctopon 21967 Cn ccn 22283 ↑ko cxko 22620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-fin 8695 df-fi 9100 df-rest 17050 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 df-cmp 22446 df-xko 22622 |
This theorem is referenced by: cnmpt2k 22747 |
Copyright terms: Public domain | W3C validator |