MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptk1 Structured version   Visualization version   GIF version

Theorem cnmptk1 22292
Description: The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptk1.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptk1.b (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
cnmptk1.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmptk1 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐶)) ∈ (𝐽 Cn (𝑀ko 𝐾)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑧,𝑍,𝑦   𝑧,𝐴   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑧,𝐶   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥,𝑦)   𝐵(𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑧)   𝐾(𝑧)   𝐿(𝑧)   𝑀(𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem cnmptk1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cnmptk1.k . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘𝑌))
21adantr 483 . . . . . 6 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
3 cnmptk1.l . . . . . . 7 (𝜑𝐿 ∈ (TopOn‘𝑍))
43adantr 483 . . . . . 6 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
5 cnmptk1.j . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 topontop 21524 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
71, 6syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
8 topontop 21524 . . . . . . . . . 10 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
93, 8syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
10 eqid 2824 . . . . . . . . . 10 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1110xkotopon 22211 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
127, 9, 11syl2anc 586 . . . . . . . 8 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
13 cnmptk1.a . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
14 cnf2 21860 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
155, 12, 13, 14syl3anc 1367 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
1615fvmptelrn 6880 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
17 cnf2 21860 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
182, 4, 16, 17syl3anc 1367 . . . . 5 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
19 eqid 2824 . . . . . 6 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2019fmpt 6877 . . . . 5 (∀𝑦𝑌 𝐴𝑍 ↔ (𝑦𝑌𝐴):𝑌𝑍)
2118, 20sylibr 236 . . . 4 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴𝑍)
22 eqidd 2825 . . . 4 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) = (𝑦𝑌𝐴))
23 eqidd 2825 . . . 4 ((𝜑𝑥𝑋) → (𝑧𝑍𝐵) = (𝑧𝑍𝐵))
24 cnmptk1.c . . . 4 (𝑧 = 𝐴𝐵 = 𝐶)
2521, 22, 23, 24fmptcof 6895 . . 3 ((𝜑𝑥𝑋) → ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)) = (𝑦𝑌𝐶))
2625mpteq2dva 5164 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴))) = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
27 cnmptk1.b . . . 4 (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
287, 27xkoco2cn 22269 . . 3 (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ ((𝑧𝑍𝐵) ∘ 𝑤)) ∈ ((𝐿ko 𝐾) Cn (𝑀ko 𝐾)))
29 coeq2 5732 . . 3 (𝑤 = (𝑦𝑌𝐴) → ((𝑧𝑍𝐵) ∘ 𝑤) = ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴)))
305, 13, 12, 28, 29cnmpt11 22274 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑧𝑍𝐵) ∘ (𝑦𝑌𝐴))) ∈ (𝐽 Cn (𝑀ko 𝐾)))
3126, 30eqeltrrd 2917 1 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐶)) ∈ (𝐽 Cn (𝑀ko 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3141  cmpt 5149  ccom 5562  wf 6354  cfv 6358  (class class class)co 7159  Topctop 21504  TopOnctopon 21521   Cn ccn 21835  ko cxko 22172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-fin 8516  df-fi 8878  df-rest 16699  df-topgen 16720  df-top 21505  df-topon 21522  df-bases 21557  df-cn 21838  df-cmp 21998  df-xko 22174
This theorem is referenced by:  cnmpt2k  22299
  Copyright terms: Public domain W3C validator