| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptk1 | Structured version Visualization version GIF version | ||
| Description: The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmptk1.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| cnmptk1.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) |
| cnmptk1.b | ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) |
| cnmptk1.c | ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cnmptk1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptk1.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 3 | cnmptk1.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘𝑍)) |
| 5 | cnmptk1.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 6 | topontop 22851 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | |
| 7 | 1, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 8 | topontop 22851 | . . . . . . . . . 10 ⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) | |
| 9 | 3, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ Top) |
| 10 | eqid 2735 | . . . . . . . . . 10 ⊢ (𝐿 ↑ko 𝐾) = (𝐿 ↑ko 𝐾) | |
| 11 | 10 | xkotopon 23538 | . . . . . . . . 9 ⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 12 | 7, 9, 11 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 13 | cnmptk1.a | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) | |
| 14 | cnf2 23187 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) | |
| 15 | 5, 12, 13, 14 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
| 16 | 15 | fvmptelcdm 7103 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| 17 | cnf2 23187 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) | |
| 18 | 2, 4, 16, 17 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
| 19 | eqid 2735 | . . . . . 6 ⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) | |
| 20 | 19 | fmpt 7100 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
| 21 | 18, 20 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍) |
| 22 | eqidd 2736 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴)) | |
| 23 | eqidd 2736 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑍 ↦ 𝐵) = (𝑧 ∈ 𝑍 ↦ 𝐵)) | |
| 24 | cnmptk1.c | . . . 4 ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) | |
| 25 | 21, 22, 23, 24 | fmptcof 7120 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴)) = (𝑦 ∈ 𝑌 ↦ 𝐶)) |
| 26 | 25 | mpteq2dva 5214 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) |
| 27 | cnmptk1.b | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) | |
| 28 | 7, 27 | xkoco2cn 23596 | . . 3 ⊢ (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ 𝑤)) ∈ ((𝐿 ↑ko 𝐾) Cn (𝑀 ↑ko 𝐾))) |
| 29 | coeq2 5838 | . . 3 ⊢ (𝑤 = (𝑦 ∈ 𝑌 ↦ 𝐴) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ 𝑤) = ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) | |
| 30 | 5, 13, 12, 28, 29 | cnmpt11 23601 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
| 31 | 26, 30 | eqeltrrd 2835 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ↦ cmpt 5201 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Topctop 22831 TopOnctopon 22848 Cn ccn 23162 ↑ko cxko 23499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-1o 8480 df-2o 8481 df-map 8842 df-en 8960 df-dom 8961 df-fin 8963 df-fi 9423 df-rest 17436 df-topgen 17457 df-top 22832 df-topon 22849 df-bases 22884 df-cn 23165 df-cmp 23325 df-xko 23501 |
| This theorem is referenced by: cnmpt2k 23626 |
| Copyright terms: Public domain | W3C validator |