| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptk1 | Structured version Visualization version GIF version | ||
| Description: The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmptk1.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| cnmptk1.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) |
| cnmptk1.b | ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) |
| cnmptk1.c | ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cnmptk1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptk1.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 3 | cnmptk1.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘𝑍)) |
| 5 | cnmptk1.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 6 | topontop 22833 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | |
| 7 | 1, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 8 | topontop 22833 | . . . . . . . . . 10 ⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) | |
| 9 | 3, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ Top) |
| 10 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝐿 ↑ko 𝐾) = (𝐿 ↑ko 𝐾) | |
| 11 | 10 | xkotopon 23520 | . . . . . . . . 9 ⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 12 | 7, 9, 11 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 13 | cnmptk1.a | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) | |
| 14 | cnf2 23169 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) | |
| 15 | 5, 12, 13, 14 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
| 16 | 15 | fvmptelcdm 7067 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| 17 | cnf2 23169 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) | |
| 18 | 2, 4, 16, 17 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) | |
| 20 | 19 | fmpt 7064 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
| 21 | 18, 20 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍) |
| 22 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴)) | |
| 23 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑍 ↦ 𝐵) = (𝑧 ∈ 𝑍 ↦ 𝐵)) | |
| 24 | cnmptk1.c | . . . 4 ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) | |
| 25 | 21, 22, 23, 24 | fmptcof 7084 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴)) = (𝑦 ∈ 𝑌 ↦ 𝐶)) |
| 26 | 25 | mpteq2dva 5195 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) |
| 27 | cnmptk1.b | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) | |
| 28 | 7, 27 | xkoco2cn 23578 | . . 3 ⊢ (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ 𝑤)) ∈ ((𝐿 ↑ko 𝐾) Cn (𝑀 ↑ko 𝐾))) |
| 29 | coeq2 5812 | . . 3 ⊢ (𝑤 = (𝑦 ∈ 𝑌 ↦ 𝐴) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ 𝑤) = ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) | |
| 30 | 5, 13, 12, 28, 29 | cnmpt11 23583 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑦 ∈ 𝑌 ↦ 𝐴))) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
| 31 | 26, 30 | eqeltrrd 2829 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ↑ko 𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5183 ∘ ccom 5635 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Topctop 22813 TopOnctopon 22830 Cn ccn 23144 ↑ko cxko 23481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-1o 8411 df-2o 8412 df-map 8778 df-en 8896 df-dom 8897 df-fin 8899 df-fi 9338 df-rest 17361 df-topgen 17382 df-top 22814 df-topon 22831 df-bases 22866 df-cn 23147 df-cmp 23307 df-xko 23483 |
| This theorem is referenced by: cnmpt2k 23608 |
| Copyright terms: Public domain | W3C validator |