MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt1f Structured version   Visualization version   GIF version

Theorem cncfmpt1f 23513
Description: Composition of continuous functions. cn analogue of cnmpt11f 22264. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt1f.1 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
cncfmpt1f.2 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
cncfmpt1f (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem cncfmpt1f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfmpt1f.2 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 23493 . . . . 5 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
4 eqid 2819 . . . . 5 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
54fmpt 6867 . . . 4 (∀𝑥𝑋 𝐴 ∈ ℂ ↔ (𝑥𝑋𝐴):𝑋⟶ℂ)
63, 5sylibr 236 . . 3 (𝜑 → ∀𝑥𝑋 𝐴 ∈ ℂ)
7 eqidd 2820 . . 3 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
8 cncfmpt1f.1 . . . . 5 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
9 cncff 23493 . . . . 5 (𝐹 ∈ (ℂ–cn→ℂ) → 𝐹:ℂ⟶ℂ)
108, 9syl 17 . . . 4 (𝜑𝐹:ℂ⟶ℂ)
1110feqmptd 6726 . . 3 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
12 fveq2 6663 . . 3 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
136, 7, 11, 12fmptcof 6885 . 2 (𝜑 → (𝐹 ∘ (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ (𝐹𝐴)))
141, 8cncfco 23507 . 2 (𝜑 → (𝐹 ∘ (𝑥𝑋𝐴)) ∈ (𝑋cn→ℂ))
1513, 14eqeltrrd 2912 1 (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wral 3136  cmpt 5137  ccom 5552  wf 6344  cfv 6348  (class class class)co 7148  cc 10527  cnccncf 23476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-2 11692  df-cj 14450  df-re 14451  df-im 14452  df-abs 14587  df-cncf 23478
This theorem is referenced by:  taylthlem2  24954  sincn  25024  coscn  25025  pige3ALT  25097  efmul2picn  31860  itgexpif  31870  ftc1cnnclem  34957  ftc2nc  34968  itgcoscmulx  42243  itgsincmulx  42248  dirkeritg  42377  dirkercncflem2  42379  dirkercncflem4  42381  fourierdlem16  42398  fourierdlem21  42403  fourierdlem22  42404  fourierdlem39  42421  fourierdlem58  42439  fourierdlem62  42443  fourierdlem68  42449  fourierdlem73  42454  fourierdlem76  42457  fourierdlem78  42459  fourierdlem83  42464  sqwvfoura  42503  sqwvfourb  42504  etransclem18  42527  etransclem46  42555
  Copyright terms: Public domain W3C validator