![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfmpt1f | Structured version Visualization version GIF version |
Description: Composition of continuous functions. –cn→ analogue of cnmpt11f 21793. (Contributed by Mario Carneiro, 3-Sep-2014.) |
Ref | Expression |
---|---|
cncfmpt1f.1 | ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
cncfmpt1f.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
Ref | Expression |
---|---|
cncfmpt1f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmpt1f.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
2 | cncff 23021 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | eqid 2797 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | |
5 | 4 | fmpt 6604 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
6 | 3, 5 | sylibr 226 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) |
7 | eqidd 2798 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
8 | cncfmpt1f.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) | |
9 | cncff 23021 | . . . . 5 ⊢ (𝐹 ∈ (ℂ–cn→ℂ) → 𝐹:ℂ⟶ℂ) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
11 | 10 | feqmptd 6472 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹‘𝑦))) |
12 | fveq2 6409 | . . 3 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
13 | 6, 7, 11, 12 | fmptcof 6622 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴))) |
14 | 1, 8 | cncfco 23035 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) ∈ (𝑋–cn→ℂ)) |
15 | 13, 14 | eqeltrrd 2877 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ∀wral 3087 ↦ cmpt 4920 ∘ ccom 5314 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ℂcc 10220 –cn→ccncf 23004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-2 11372 df-cj 14177 df-re 14178 df-im 14179 df-abs 14314 df-cncf 23006 |
This theorem is referenced by: taylthlem2 24466 sincn 24536 coscn 24537 pige3 24608 efmul2picn 31186 itgexpif 31196 ftc1cnnclem 33963 ftc2nc 33974 itgcoscmulx 40916 itgsincmulx 40921 dirkeritg 41050 dirkercncflem2 41052 dirkercncflem4 41054 fourierdlem16 41071 fourierdlem21 41076 fourierdlem22 41077 fourierdlem39 41094 fourierdlem58 41112 fourierdlem62 41116 fourierdlem68 41122 fourierdlem73 41127 fourierdlem76 41130 fourierdlem78 41132 fourierdlem83 41137 sqwvfoura 41176 sqwvfourb 41177 etransclem18 41200 etransclem46 41228 |
Copyright terms: Public domain | W3C validator |