MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt1f Structured version   Visualization version   GIF version

Theorem cncfmpt1f 24835
Description: Composition of continuous functions. cn analogue of cnmpt11f 23580. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt1f.1 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
cncfmpt1f.2 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
cncfmpt1f (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem cncfmpt1f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfmpt1f.2 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 24814 . . . . 5 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
4 eqid 2733 . . . . 5 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
54fmpt 7049 . . . 4 (∀𝑥𝑋 𝐴 ∈ ℂ ↔ (𝑥𝑋𝐴):𝑋⟶ℂ)
63, 5sylibr 234 . . 3 (𝜑 → ∀𝑥𝑋 𝐴 ∈ ℂ)
7 eqidd 2734 . . 3 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
8 cncfmpt1f.1 . . . . 5 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
9 cncff 24814 . . . . 5 (𝐹 ∈ (ℂ–cn→ℂ) → 𝐹:ℂ⟶ℂ)
108, 9syl 17 . . . 4 (𝜑𝐹:ℂ⟶ℂ)
1110feqmptd 6896 . . 3 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
12 fveq2 6828 . . 3 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
136, 7, 11, 12fmptcof 7069 . 2 (𝜑 → (𝐹 ∘ (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ (𝐹𝐴)))
141, 8cncfco 24828 . 2 (𝜑 → (𝐹 ∘ (𝑥𝑋𝐴)) ∈ (𝑋cn→ℂ))
1513, 14eqeltrrd 2834 1 (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wral 3048  cmpt 5174  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  cnccncf 24797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-cj 15008  df-re 15009  df-im 15010  df-abs 15145  df-cncf 24799
This theorem is referenced by:  taylthlem2  26310  taylthlem2OLD  26311  sincn  26382  coscn  26383  pige3ALT  26457  efmul2picn  34630  itgexpif  34640  ftc1cnnclem  37751  ftc2nc  37762  itgcoscmulx  46091  itgsincmulx  46096  dirkeritg  46224  dirkercncflem2  46226  dirkercncflem4  46228  fourierdlem16  46245  fourierdlem21  46250  fourierdlem22  46251  fourierdlem39  46268  fourierdlem58  46286  fourierdlem62  46290  fourierdlem68  46296  fourierdlem73  46301  fourierdlem76  46304  fourierdlem78  46306  fourierdlem83  46311  sqwvfoura  46350  sqwvfourb  46351  etransclem18  46374  etransclem46  46402
  Copyright terms: Public domain W3C validator