MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt1f Structured version   Visualization version   GIF version

Theorem cncfmpt1f 23521
Description: Composition of continuous functions. cn analogue of cnmpt11f 22272. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt1f.1 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
cncfmpt1f.2 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
cncfmpt1f (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem cncfmpt1f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfmpt1f.2 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 23501 . . . . 5 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
4 eqid 2821 . . . . 5 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
54fmpt 6874 . . . 4 (∀𝑥𝑋 𝐴 ∈ ℂ ↔ (𝑥𝑋𝐴):𝑋⟶ℂ)
63, 5sylibr 236 . . 3 (𝜑 → ∀𝑥𝑋 𝐴 ∈ ℂ)
7 eqidd 2822 . . 3 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
8 cncfmpt1f.1 . . . . 5 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
9 cncff 23501 . . . . 5 (𝐹 ∈ (ℂ–cn→ℂ) → 𝐹:ℂ⟶ℂ)
108, 9syl 17 . . . 4 (𝜑𝐹:ℂ⟶ℂ)
1110feqmptd 6733 . . 3 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
12 fveq2 6670 . . 3 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
136, 7, 11, 12fmptcof 6892 . 2 (𝜑 → (𝐹 ∘ (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ (𝐹𝐴)))
141, 8cncfco 23515 . 2 (𝜑 → (𝐹 ∘ (𝑥𝑋𝐴)) ∈ (𝑋cn→ℂ))
1513, 14eqeltrrd 2914 1 (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  wral 3138  cmpt 5146  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cnccncf 23484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-cj 14458  df-re 14459  df-im 14460  df-abs 14595  df-cncf 23486
This theorem is referenced by:  taylthlem2  24962  sincn  25032  coscn  25033  pige3ALT  25105  efmul2picn  31867  itgexpif  31877  ftc1cnnclem  34980  ftc2nc  34991  itgcoscmulx  42274  itgsincmulx  42279  dirkeritg  42407  dirkercncflem2  42409  dirkercncflem4  42411  fourierdlem16  42428  fourierdlem21  42433  fourierdlem22  42434  fourierdlem39  42451  fourierdlem58  42469  fourierdlem62  42473  fourierdlem68  42479  fourierdlem73  42484  fourierdlem76  42487  fourierdlem78  42489  fourierdlem83  42494  sqwvfoura  42533  sqwvfourb  42534  etransclem18  42557  etransclem46  42585
  Copyright terms: Public domain W3C validator