MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsfrnel2 Structured version   Visualization version   GIF version

Theorem xpsfrnel2 17583
Description: Elementhood in the target space of the function 𝐹 appearing in xpsval 17589. (Contributed by Mario Carneiro, 15-Aug-2015.)
Assertion
Ref Expression
xpsfrnel2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝑌

Proof of Theorem xpsfrnel2
StepHypRef Expression
1 xpsfrnel 17581 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))
2 fnpr2ob 17577 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
32biimpri 228 . . . 4 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → (𝑋 ∈ V ∧ 𝑌 ∈ V))
433ad2ant1 1133 . . 3 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
5 elex 3485 . . . 4 (𝑋𝐴𝑋 ∈ V)
6 elex 3485 . . . 4 (𝑌𝐵𝑌 ∈ V)
75, 6anim12i 613 . . 3 ((𝑋𝐴𝑌𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
8 3anass 1094 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)))
9 fnpr2o 17576 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
109biantrurd 532 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))))
11 fvpr0o 17578 . . . . . . 7 (𝑋 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) = 𝑋)
1211eleq1d 2820 . . . . . 6 (𝑋 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴𝑋𝐴))
13 fvpr1o 17579 . . . . . . 7 (𝑌 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) = 𝑌)
1413eleq1d 2820 . . . . . 6 (𝑌 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵𝑌𝐵))
1512, 14bi2anan9 638 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
1610, 15bitr3d 281 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)) ↔ (𝑋𝐴𝑌𝐵)))
178, 16bitrid 283 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
184, 7, 17pm5.21nii 378 . 2 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵))
191, 18bitri 275 1 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  ifcif 4505  {cpr 4608  cop 4612   Fn wfn 6531  cfv 6536  1oc1o 8478  2oc2o 8479  Xcixp 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-2o 8486  df-ixp 8917  df-en 8965  df-fin 8968
This theorem is referenced by:  xpscf  17584  xpsff1o  17586
  Copyright terms: Public domain W3C validator