MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsfrnel2 Structured version   Visualization version   GIF version

Theorem xpsfrnel2 17447
Description: Elementhood in the target space of the function 𝐹 appearing in xpsval 17453. (Contributed by Mario Carneiro, 15-Aug-2015.)
Assertion
Ref Expression
xpsfrnel2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝑌

Proof of Theorem xpsfrnel2
StepHypRef Expression
1 xpsfrnel 17445 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))
2 fnpr2ob 17441 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
32biimpri 227 . . . 4 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → (𝑋 ∈ V ∧ 𝑌 ∈ V))
433ad2ant1 1134 . . 3 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
5 elex 3464 . . . 4 (𝑋𝐴𝑋 ∈ V)
6 elex 3464 . . . 4 (𝑌𝐵𝑌 ∈ V)
75, 6anim12i 614 . . 3 ((𝑋𝐴𝑌𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
8 3anass 1096 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)))
9 fnpr2o 17440 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
109biantrurd 534 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))))
11 fvpr0o 17442 . . . . . . 7 (𝑋 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) = 𝑋)
1211eleq1d 2823 . . . . . 6 (𝑋 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴𝑋𝐴))
13 fvpr1o 17443 . . . . . . 7 (𝑌 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) = 𝑌)
1413eleq1d 2823 . . . . . 6 (𝑌 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵𝑌𝐵))
1512, 14bi2anan9 638 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
1610, 15bitr3d 281 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)) ↔ (𝑋𝐴𝑌𝐵)))
178, 16bitrid 283 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
184, 7, 17pm5.21nii 380 . 2 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵))
191, 18bitri 275 1 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3446  c0 4283  ifcif 4487  {cpr 4589  cop 4593   Fn wfn 6492  cfv 6497  1oc1o 8406  2oc2o 8407  Xcixp 8836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-om 7804  df-1o 8413  df-2o 8414  df-ixp 8837  df-en 8885  df-fin 8888
This theorem is referenced by:  xpscf  17448  xpsff1o  17450
  Copyright terms: Public domain W3C validator