MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsfrnel2 Structured version   Visualization version   GIF version

Theorem xpsfrnel2 17611
Description: Elementhood in the target space of the function 𝐹 appearing in xpsval 17617. (Contributed by Mario Carneiro, 15-Aug-2015.)
Assertion
Ref Expression
xpsfrnel2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝑌

Proof of Theorem xpsfrnel2
StepHypRef Expression
1 xpsfrnel 17609 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))
2 fnpr2ob 17605 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
32biimpri 228 . . . 4 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → (𝑋 ∈ V ∧ 𝑌 ∈ V))
433ad2ant1 1132 . . 3 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
5 elex 3499 . . . 4 (𝑋𝐴𝑋 ∈ V)
6 elex 3499 . . . 4 (𝑌𝐵𝑌 ∈ V)
75, 6anim12i 613 . . 3 ((𝑋𝐴𝑌𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
8 3anass 1094 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)))
9 fnpr2o 17604 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
109biantrurd 532 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))))
11 fvpr0o 17606 . . . . . . 7 (𝑋 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) = 𝑋)
1211eleq1d 2824 . . . . . 6 (𝑋 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴𝑋𝐴))
13 fvpr1o 17607 . . . . . . 7 (𝑌 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) = 𝑌)
1413eleq1d 2824 . . . . . 6 (𝑌 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵𝑌𝐵))
1512, 14bi2anan9 638 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
1610, 15bitr3d 281 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)) ↔ (𝑋𝐴𝑌𝐵)))
178, 16bitrid 283 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
184, 7, 17pm5.21nii 378 . 2 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵))
191, 18bitri 275 1 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  ifcif 4531  {cpr 4633  cop 4637   Fn wfn 6558  cfv 6563  1oc1o 8498  2oc2o 8499  Xcixp 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-ixp 8937  df-en 8985  df-fin 8988
This theorem is referenced by:  xpscf  17612  xpsff1o  17614
  Copyright terms: Public domain W3C validator