MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsfrnel2 Structured version   Visualization version   GIF version

Theorem xpsfrnel2 17192
Description: Elementhood in the target space of the function 𝐹 appearing in xpsval 17198. (Contributed by Mario Carneiro, 15-Aug-2015.)
Assertion
Ref Expression
xpsfrnel2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝑌

Proof of Theorem xpsfrnel2
StepHypRef Expression
1 xpsfrnel 17190 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))
2 fnpr2ob 17186 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
32biimpri 227 . . . 4 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → (𝑋 ∈ V ∧ 𝑌 ∈ V))
433ad2ant1 1131 . . 3 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
5 elex 3440 . . . 4 (𝑋𝐴𝑋 ∈ V)
6 elex 3440 . . . 4 (𝑌𝐵𝑌 ∈ V)
75, 6anim12i 612 . . 3 ((𝑋𝐴𝑌𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
8 3anass 1093 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)))
9 fnpr2o 17185 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
109biantrurd 532 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))))
11 fvpr0o 17187 . . . . . . 7 (𝑋 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) = 𝑋)
1211eleq1d 2823 . . . . . 6 (𝑋 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴𝑋𝐴))
13 fvpr1o 17188 . . . . . . 7 (𝑌 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) = 𝑌)
1413eleq1d 2823 . . . . . 6 (𝑌 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵𝑌𝐵))
1512, 14bi2anan9 635 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
1610, 15bitr3d 280 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)) ↔ (𝑋𝐴𝑌𝐵)))
178, 16syl5bb 282 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
184, 7, 17pm5.21nii 379 . 2 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵))
191, 18bitri 274 1 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  ifcif 4456  {cpr 4560  cop 4564   Fn wfn 6413  cfv 6418  1oc1o 8260  2oc2o 8261  Xcixp 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-ixp 8644  df-en 8692  df-fin 8695
This theorem is referenced by:  xpscf  17193  xpsff1o  17195
  Copyright terms: Public domain W3C validator