MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsplitOLD Structured version   Visualization version   GIF version

Theorem fsplitOLD 7958
Description: Obsolete proof of fsplit 7957 as of 31-Dec-2023. (Contributed by NM, 17-Sep-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fsplitOLD (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)

Proof of Theorem fsplitOLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . . 5 𝑥 ∈ V
2 vex 3436 . . . . 5 𝑦 ∈ V
31, 2brcnv 5791 . . . 4 (𝑥(1st ↾ I )𝑦𝑦(1st ↾ I )𝑥)
41brresi 5900 . . . . 5 (𝑦(1st ↾ I )𝑥 ↔ (𝑦 ∈ I ∧ 𝑦1st 𝑥))
5 19.42v 1957 . . . . . . 7 (∃𝑧((1st𝑦) = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ ((1st𝑦) = 𝑥 ∧ ∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩))
6 vex 3436 . . . . . . . . . . 11 𝑧 ∈ V
76, 6op1std 7841 . . . . . . . . . 10 (𝑦 = ⟨𝑧, 𝑧⟩ → (1st𝑦) = 𝑧)
87eqeq1d 2740 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑧⟩ → ((1st𝑦) = 𝑥𝑧 = 𝑥))
98pm5.32ri 576 . . . . . . . 8 (((1st𝑦) = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ (𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩))
109exbii 1850 . . . . . . 7 (∃𝑧((1st𝑦) = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ ∃𝑧(𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩))
11 fo1st 7851 . . . . . . . . . 10 1st :V–onto→V
12 fofn 6690 . . . . . . . . . 10 (1st :V–onto→V → 1st Fn V)
1311, 12ax-mp 5 . . . . . . . . 9 1st Fn V
14 fnbrfvb 6822 . . . . . . . . 9 ((1st Fn V ∧ 𝑦 ∈ V) → ((1st𝑦) = 𝑥𝑦1st 𝑥))
1513, 2, 14mp2an 689 . . . . . . . 8 ((1st𝑦) = 𝑥𝑦1st 𝑥)
16 dfid2 5491 . . . . . . . . . 10 I = {⟨𝑧, 𝑧⟩ ∣ 𝑧 = 𝑧}
1716eleq2i 2830 . . . . . . . . 9 (𝑦 ∈ I ↔ 𝑦 ∈ {⟨𝑧, 𝑧⟩ ∣ 𝑧 = 𝑧})
18 nfe1 2147 . . . . . . . . . . 11 𝑧𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧)
191819.9 2198 . . . . . . . . . 10 (∃𝑧𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧) ↔ ∃𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧))
20 elopab 5440 . . . . . . . . . 10 (𝑦 ∈ {⟨𝑧, 𝑧⟩ ∣ 𝑧 = 𝑧} ↔ ∃𝑧𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧))
21 equid 2015 . . . . . . . . . . . 12 𝑧 = 𝑧
2221biantru 530 . . . . . . . . . . 11 (𝑦 = ⟨𝑧, 𝑧⟩ ↔ (𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧))
2322exbii 1850 . . . . . . . . . 10 (∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩ ↔ ∃𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧))
2419, 20, 233bitr4i 303 . . . . . . . . 9 (𝑦 ∈ {⟨𝑧, 𝑧⟩ ∣ 𝑧 = 𝑧} ↔ ∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩)
2517, 24bitr2i 275 . . . . . . . 8 (∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩ ↔ 𝑦 ∈ I )
2615, 25anbi12ci 628 . . . . . . 7 (((1st𝑦) = 𝑥 ∧ ∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩) ↔ (𝑦 ∈ I ∧ 𝑦1st 𝑥))
275, 10, 263bitr3ri 302 . . . . . 6 ((𝑦 ∈ I ∧ 𝑦1st 𝑥) ↔ ∃𝑧(𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩))
28 id 22 . . . . . . . . 9 (𝑧 = 𝑥𝑧 = 𝑥)
2928, 28opeq12d 4812 . . . . . . . 8 (𝑧 = 𝑥 → ⟨𝑧, 𝑧⟩ = ⟨𝑥, 𝑥⟩)
3029eqeq2d 2749 . . . . . . 7 (𝑧 = 𝑥 → (𝑦 = ⟨𝑧, 𝑧⟩ ↔ 𝑦 = ⟨𝑥, 𝑥⟩))
3130equsexvw 2008 . . . . . 6 (∃𝑧(𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ 𝑦 = ⟨𝑥, 𝑥⟩)
3227, 31bitri 274 . . . . 5 ((𝑦 ∈ I ∧ 𝑦1st 𝑥) ↔ 𝑦 = ⟨𝑥, 𝑥⟩)
334, 32bitri 274 . . . 4 (𝑦(1st ↾ I )𝑥𝑦 = ⟨𝑥, 𝑥⟩)
343, 33bitri 274 . . 3 (𝑥(1st ↾ I )𝑦𝑦 = ⟨𝑥, 𝑥⟩)
3534opabbii 5141 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(1st ↾ I )𝑦} = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = ⟨𝑥, 𝑥⟩}
36 relcnv 6012 . . 3 Rel (1st ↾ I )
37 dfrel4v 6093 . . 3 (Rel (1st ↾ I ) ↔ (1st ↾ I ) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(1st ↾ I )𝑦})
3836, 37mpbi 229 . 2 (1st ↾ I ) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(1st ↾ I )𝑦}
39 mptv 5190 . 2 (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = ⟨𝑥, 𝑥⟩}
4035, 38, 393eqtr4i 2776 1 (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cop 4567   class class class wbr 5074  {copab 5136  cmpt 5157   I cid 5488  ccnv 5588  cres 5591  Rel wrel 5594   Fn wfn 6428  ontowfo 6431  cfv 6433  1st c1st 7829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator