Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppcolem | Structured version Visualization version GIF version |
Description: Lemma for fsuppco 9091. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
fsuppcolem.f | ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
fsuppcolem.g | ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) |
Ref | Expression |
---|---|
fsuppcolem | ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5783 | . . . 4 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
2 | 1 | imaeq1i 5955 | . . 3 ⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) |
3 | imaco 6144 | . . 3 ⊢ ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) | |
4 | 2, 3 | eqtri 2766 | . 2 ⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) |
5 | fsuppcolem.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) | |
6 | df-f1 6423 | . . . . 5 ⊢ (𝐺:𝑋–1-1→𝑌 ↔ (𝐺:𝑋⟶𝑌 ∧ Fun ◡𝐺)) | |
7 | 6 | simprbi 496 | . . . 4 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun ◡𝐺) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → Fun ◡𝐺) |
9 | fsuppcolem.f | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) | |
10 | imafi 8920 | . . 3 ⊢ ((Fun ◡𝐺 ∧ (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) | |
11 | 8, 9, 10 | syl2anc 583 | . 2 ⊢ (𝜑 → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) |
12 | 4, 11 | eqeltrid 2843 | 1 ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 {csn 4558 ◡ccnv 5579 “ cima 5583 ∘ ccom 5584 Fun wfun 6412 ⟶wf 6414 –1-1→wf1 6415 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 |
This theorem is referenced by: fsuppco 9091 |
Copyright terms: Public domain | W3C validator |