MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppcolem Structured version   Visualization version   GIF version

Theorem fsuppcolem 9439
Description: Lemma for fsuppco 9440. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
fsuppcolem.f (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
fsuppcolem.g (𝜑𝐺:𝑋1-1𝑌)
Assertion
Ref Expression
fsuppcolem (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)

Proof of Theorem fsuppcolem
StepHypRef Expression
1 cnvco 5899 . . . 4 (𝐹𝐺) = (𝐺𝐹)
21imaeq1i 6077 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
3 imaco 6273 . . 3 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
42, 3eqtri 2763 . 2 ((𝐹𝐺) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
5 fsuppcolem.g . . . 4 (𝜑𝐺:𝑋1-1𝑌)
6 df-f1 6568 . . . . 5 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
76simprbi 496 . . . 4 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
85, 7syl 17 . . 3 (𝜑 → Fun 𝐺)
9 fsuppcolem.f . . 3 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
10 imafi 9351 . . 3 ((Fun 𝐺 ∧ (𝐹 “ (V ∖ {𝑍})) ∈ Fin) → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
118, 9, 10syl2anc 584 . 2 (𝜑 → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
124, 11eqeltrid 2843 1 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3478  cdif 3960  {csn 4631  ccnv 5688  cima 5692  ccom 5693  Fun wfun 6557  wf 6559  1-1wf1 6560  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-dom 8986  df-fin 8988
This theorem is referenced by:  fsuppco  9440
  Copyright terms: Public domain W3C validator