MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppcolem Structured version   Visualization version   GIF version

Theorem fsuppcolem 9090
Description: Lemma for fsuppco 9091. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
fsuppcolem.f (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
fsuppcolem.g (𝜑𝐺:𝑋1-1𝑌)
Assertion
Ref Expression
fsuppcolem (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)

Proof of Theorem fsuppcolem
StepHypRef Expression
1 cnvco 5783 . . . 4 (𝐹𝐺) = (𝐺𝐹)
21imaeq1i 5955 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
3 imaco 6144 . . 3 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
42, 3eqtri 2766 . 2 ((𝐹𝐺) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
5 fsuppcolem.g . . . 4 (𝜑𝐺:𝑋1-1𝑌)
6 df-f1 6423 . . . . 5 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
76simprbi 496 . . . 4 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
85, 7syl 17 . . 3 (𝜑 → Fun 𝐺)
9 fsuppcolem.f . . 3 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
10 imafi 8920 . . 3 ((Fun 𝐺 ∧ (𝐹 “ (V ∖ {𝑍})) ∈ Fin) → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
118, 9, 10syl2anc 583 . 2 (𝜑 → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
124, 11eqeltrid 2843 1 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  cdif 3880  {csn 4558  ccnv 5579  cima 5583  ccom 5584  Fun wfun 6412  wf 6414  1-1wf1 6415  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695
This theorem is referenced by:  fsuppco  9091
  Copyright terms: Public domain W3C validator