![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppcolem | Structured version Visualization version GIF version |
Description: Lemma for fsuppco 9440. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
fsuppcolem.f | ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
fsuppcolem.g | ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) |
Ref | Expression |
---|---|
fsuppcolem | ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5899 | . . . 4 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
2 | 1 | imaeq1i 6077 | . . 3 ⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) |
3 | imaco 6273 | . . 3 ⊢ ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) | |
4 | 2, 3 | eqtri 2763 | . 2 ⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) |
5 | fsuppcolem.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) | |
6 | df-f1 6568 | . . . . 5 ⊢ (𝐺:𝑋–1-1→𝑌 ↔ (𝐺:𝑋⟶𝑌 ∧ Fun ◡𝐺)) | |
7 | 6 | simprbi 496 | . . . 4 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun ◡𝐺) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → Fun ◡𝐺) |
9 | fsuppcolem.f | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) | |
10 | imafi 9351 | . . 3 ⊢ ((Fun ◡𝐺 ∧ (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) | |
11 | 8, 9, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) |
12 | 4, 11 | eqeltrid 2843 | 1 ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 {csn 4631 ◡ccnv 5688 “ cima 5692 ∘ ccom 5693 Fun wfun 6557 ⟶wf 6559 –1-1→wf1 6560 Fincfn 8984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-en 8985 df-dom 8986 df-fin 8988 |
This theorem is referenced by: fsuppco 9440 |
Copyright terms: Public domain | W3C validator |