MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppcolem Structured version   Visualization version   GIF version

Theorem fsuppcolem 9398
Description: Lemma for fsuppco 9399. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
fsuppcolem.f (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
fsuppcolem.g (𝜑𝐺:𝑋1-1𝑌)
Assertion
Ref Expression
fsuppcolem (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)

Proof of Theorem fsuppcolem
StepHypRef Expression
1 cnvco 5879 . . . 4 (𝐹𝐺) = (𝐺𝐹)
21imaeq1i 6050 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
3 imaco 6244 . . 3 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
42, 3eqtri 2754 . 2 ((𝐹𝐺) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
5 fsuppcolem.g . . . 4 (𝜑𝐺:𝑋1-1𝑌)
6 df-f1 6542 . . . . 5 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
76simprbi 496 . . . 4 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
85, 7syl 17 . . 3 (𝜑 → Fun 𝐺)
9 fsuppcolem.f . . 3 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
10 imafi 9177 . . 3 ((Fun 𝐺 ∧ (𝐹 “ (V ∖ {𝑍})) ∈ Fin) → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
118, 9, 10syl2anc 583 . 2 (𝜑 → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
124, 11eqeltrid 2831 1 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3468  cdif 3940  {csn 4623  ccnv 5668  cima 5672  ccom 5673  Fun wfun 6531  wf 6533  1-1wf1 6534  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-om 7853  df-1o 8467  df-en 8942  df-fin 8945
This theorem is referenced by:  fsuppco  9399
  Copyright terms: Public domain W3C validator