MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppcolem Structured version   Visualization version   GIF version

Theorem fsuppcolem 9441
Description: Lemma for fsuppco 9442. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
fsuppcolem.f (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
fsuppcolem.g (𝜑𝐺:𝑋1-1𝑌)
Assertion
Ref Expression
fsuppcolem (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)

Proof of Theorem fsuppcolem
StepHypRef Expression
1 cnvco 5896 . . . 4 (𝐹𝐺) = (𝐺𝐹)
21imaeq1i 6075 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
3 imaco 6271 . . 3 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
42, 3eqtri 2765 . 2 ((𝐹𝐺) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
5 fsuppcolem.g . . . 4 (𝜑𝐺:𝑋1-1𝑌)
6 df-f1 6566 . . . . 5 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
76simprbi 496 . . . 4 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
85, 7syl 17 . . 3 (𝜑 → Fun 𝐺)
9 fsuppcolem.f . . 3 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
10 imafi 9353 . . 3 ((Fun 𝐺 ∧ (𝐹 “ (V ∖ {𝑍})) ∈ Fin) → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
118, 9, 10syl2anc 584 . 2 (𝜑 → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
124, 11eqeltrid 2845 1 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3480  cdif 3948  {csn 4626  ccnv 5684  cima 5688  ccom 5689  Fun wfun 6555  wf 6557  1-1wf1 6558  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-en 8986  df-dom 8987  df-fin 8989
This theorem is referenced by:  fsuppco  9442
  Copyright terms: Public domain W3C validator