Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppcolem | Structured version Visualization version GIF version |
Description: Lemma for fsuppco 9161. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
fsuppcolem.f | ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
fsuppcolem.g | ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) |
Ref | Expression |
---|---|
fsuppcolem | ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5794 | . . . 4 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
2 | 1 | imaeq1i 5966 | . . 3 ⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) |
3 | imaco 6155 | . . 3 ⊢ ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) | |
4 | 2, 3 | eqtri 2766 | . 2 ⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) |
5 | fsuppcolem.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) | |
6 | df-f1 6438 | . . . . 5 ⊢ (𝐺:𝑋–1-1→𝑌 ↔ (𝐺:𝑋⟶𝑌 ∧ Fun ◡𝐺)) | |
7 | 6 | simprbi 497 | . . . 4 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun ◡𝐺) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → Fun ◡𝐺) |
9 | fsuppcolem.f | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) | |
10 | imafi 8958 | . . 3 ⊢ ((Fun ◡𝐺 ∧ (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) | |
11 | 8, 9, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) |
12 | 4, 11 | eqeltrid 2843 | 1 ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 {csn 4561 ◡ccnv 5588 “ cima 5592 ∘ ccom 5593 Fun wfun 6427 ⟶wf 6429 –1-1→wf1 6430 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: fsuppco 9161 |
Copyright terms: Public domain | W3C validator |