![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppcolem | Structured version Visualization version GIF version |
Description: Lemma for fsuppco 9393. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
fsuppcolem.f | ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
fsuppcolem.g | ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) |
Ref | Expression |
---|---|
fsuppcolem | ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5883 | . . . 4 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
2 | 1 | imaeq1i 6054 | . . 3 ⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) |
3 | imaco 6247 | . . 3 ⊢ ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) | |
4 | 2, 3 | eqtri 2760 | . 2 ⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) |
5 | fsuppcolem.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) | |
6 | df-f1 6545 | . . . . 5 ⊢ (𝐺:𝑋–1-1→𝑌 ↔ (𝐺:𝑋⟶𝑌 ∧ Fun ◡𝐺)) | |
7 | 6 | simprbi 497 | . . . 4 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun ◡𝐺) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → Fun ◡𝐺) |
9 | fsuppcolem.f | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) | |
10 | imafi 9171 | . . 3 ⊢ ((Fun ◡𝐺 ∧ (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) | |
11 | 8, 9, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) |
12 | 4, 11 | eqeltrid 2837 | 1 ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3944 {csn 4627 ◡ccnv 5674 “ cima 5678 ∘ ccom 5679 Fun wfun 6534 ⟶wf 6536 –1-1→wf1 6537 Fincfn 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-en 8936 df-fin 8939 |
This theorem is referenced by: fsuppco 9393 |
Copyright terms: Public domain | W3C validator |