Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhincfun Structured version   Visualization version   GIF version

Theorem functhincfun 49071
Description: A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
functhincfun.d (𝜑𝐶 ∈ Cat)
functhincfun.e (𝜑𝐷 ∈ ThinCat)
Assertion
Ref Expression
functhincfun (𝜑 → Fun (𝐶 Func 𝐷))

Proof of Theorem functhincfun
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17903 . 2 Rel (𝐶 Func 𝐷)
2 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓(𝐶 Func 𝐷)𝑔)
3 eqid 2736 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2736 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2736 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2736 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
7 functhincfun.d . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
87adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝐶 ∈ Cat)
9 functhincfun.e . . . . . . . . 9 (𝜑𝐷 ∈ ThinCat)
109adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝐷 ∈ ThinCat)
113, 4, 2funcf1 17907 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
12 eqid 2736 . . . . . . . 8 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
13 simplrl 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑓(𝐶 Func 𝐷)𝑔)
14 simprl 771 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
15 simprr 773 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
163, 5, 6, 13, 14, 15funcf2 17909 . . . . . . . . . 10 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))
1716f002 48736 . . . . . . . . 9 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅))
1817ralrimivva 3201 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅))
193, 4, 5, 6, 8, 10, 11, 12, 18functhinc 49070 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → (𝑓(𝐶 Func 𝐷)𝑔𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))))
202, 19mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
21 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓(𝐶 Func 𝐷))
223, 4, 5, 6, 8, 10, 11, 12, 18functhinc 49070 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → (𝑓(𝐶 Func 𝐷) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))))
2321, 22mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
2420, 23eqtr4d 2779 . . . . 5 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑔 = )
2524ex 412 . . . 4 (𝜑 → ((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
2625alrimivv 1928 . . 3 (𝜑 → ∀𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
2726alrimiv 1927 . 2 (𝜑 → ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
28 dffun2 6569 . . 3 (Fun (𝐶 Func 𝐷) ↔ (Rel (𝐶 Func 𝐷) ∧ ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = )))
2928biimpri 228 . 2 ((Rel (𝐶 Func 𝐷) ∧ ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = )) → Fun (𝐶 Func 𝐷))
301, 27, 29sylancr 587 1 (𝜑 → Fun (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2108  c0 4332   class class class wbr 5141   × cxp 5681  Rel wrel 5688  Fun wfun 6553  cfv 6559  (class class class)co 7429  cmpo 7431  Basecbs 17243  Hom chom 17304  Catccat 17703   Func cfunc 17895  ThinCatcthinc 49040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-1st 8010  df-2nd 8011  df-map 8864  df-ixp 8934  df-cat 17707  df-cid 17708  df-func 17899  df-thinc 49041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator