Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhincfun Structured version   Visualization version   GIF version

Theorem functhincfun 49444
Description: A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
functhincfun.d (𝜑𝐶 ∈ Cat)
functhincfun.e (𝜑𝐷 ∈ ThinCat)
Assertion
Ref Expression
functhincfun (𝜑 → Fun (𝐶 Func 𝐷))

Proof of Theorem functhincfun
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17769 . 2 Rel (𝐶 Func 𝐷)
2 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓(𝐶 Func 𝐷)𝑔)
3 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2729 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
7 functhincfun.d . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
87adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝐶 ∈ Cat)
9 functhincfun.e . . . . . . . . 9 (𝜑𝐷 ∈ ThinCat)
109adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝐷 ∈ ThinCat)
113, 4, 2funcf1 17773 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
12 eqid 2729 . . . . . . . 8 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
13 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑓(𝐶 Func 𝐷)𝑔)
14 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
15 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
163, 5, 6, 13, 14, 15funcf2 17775 . . . . . . . . . 10 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))
1716f002 48848 . . . . . . . . 9 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅))
1817ralrimivva 3172 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅))
193, 4, 5, 6, 8, 10, 11, 12, 18functhinc 49443 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → (𝑓(𝐶 Func 𝐷)𝑔𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))))
202, 19mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
21 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓(𝐶 Func 𝐷))
223, 4, 5, 6, 8, 10, 11, 12, 18functhinc 49443 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → (𝑓(𝐶 Func 𝐷) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))))
2321, 22mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
2420, 23eqtr4d 2767 . . . . 5 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑔 = )
2524ex 412 . . . 4 (𝜑 → ((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
2625alrimivv 1928 . . 3 (𝜑 → ∀𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
2726alrimiv 1927 . 2 (𝜑 → ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
28 dffun2 6492 . . 3 (Fun (𝐶 Func 𝐷) ↔ (Rel (𝐶 Func 𝐷) ∧ ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = )))
2928biimpri 228 . 2 ((Rel (𝐶 Func 𝐷) ∧ ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = )) → Fun (𝐶 Func 𝐷))
301, 27, 29sylancr 587 1 (𝜑 → Fun (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  c0 4284   class class class wbr 5092   × cxp 5617  Rel wrel 5624  Fun wfun 6476  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Hom chom 17172  Catccat 17570   Func cfunc 17761  ThinCatcthinc 49412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-cat 17574  df-cid 17575  df-func 17765  df-thinc 49413
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator