Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhincfun Structured version   Visualization version   GIF version

Theorem functhincfun 49560
Description: A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
functhincfun.d (𝜑𝐶 ∈ Cat)
functhincfun.e (𝜑𝐷 ∈ ThinCat)
Assertion
Ref Expression
functhincfun (𝜑 → Fun (𝐶 Func 𝐷))

Proof of Theorem functhincfun
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17769 . 2 Rel (𝐶 Func 𝐷)
2 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓(𝐶 Func 𝐷)𝑔)
3 eqid 2731 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2731 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2731 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2731 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
7 functhincfun.d . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
87adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝐶 ∈ Cat)
9 functhincfun.e . . . . . . . . 9 (𝜑𝐷 ∈ ThinCat)
109adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝐷 ∈ ThinCat)
113, 4, 2funcf1 17773 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
12 eqid 2731 . . . . . . . 8 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
13 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑓(𝐶 Func 𝐷)𝑔)
14 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
15 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
163, 5, 6, 13, 14, 15funcf2 17775 . . . . . . . . . 10 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))
1716f002 48964 . . . . . . . . 9 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅))
1817ralrimivva 3175 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅))
193, 4, 5, 6, 8, 10, 11, 12, 18functhinc 49559 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → (𝑓(𝐶 Func 𝐷)𝑔𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))))
202, 19mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
21 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓(𝐶 Func 𝐷))
223, 4, 5, 6, 8, 10, 11, 12, 18functhinc 49559 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → (𝑓(𝐶 Func 𝐷) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))))
2321, 22mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
2420, 23eqtr4d 2769 . . . . 5 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑔 = )
2524ex 412 . . . 4 (𝜑 → ((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
2625alrimivv 1929 . . 3 (𝜑 → ∀𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
2726alrimiv 1928 . 2 (𝜑 → ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
28 dffun2 6491 . . 3 (Fun (𝐶 Func 𝐷) ↔ (Rel (𝐶 Func 𝐷) ∧ ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = )))
2928biimpri 228 . 2 ((Rel (𝐶 Func 𝐷) ∧ ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = )) → Fun (𝐶 Func 𝐷))
301, 27, 29sylancr 587 1 (𝜑 → Fun (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  c0 4280   class class class wbr 5089   × cxp 5612  Rel wrel 5619  Fun wfun 6475  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  Hom chom 17172  Catccat 17570   Func cfunc 17761  ThinCatcthinc 49528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17574  df-cid 17575  df-func 17765  df-thinc 49529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator