Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhincfun Structured version   Visualization version   GIF version

Theorem functhincfun 49198
Description: A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
functhincfun.d (𝜑𝐶 ∈ Cat)
functhincfun.e (𝜑𝐷 ∈ ThinCat)
Assertion
Ref Expression
functhincfun (𝜑 → Fun (𝐶 Func 𝐷))

Proof of Theorem functhincfun
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17862 . 2 Rel (𝐶 Func 𝐷)
2 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓(𝐶 Func 𝐷)𝑔)
3 eqid 2734 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2734 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2734 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2734 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
7 functhincfun.d . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
87adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝐶 ∈ Cat)
9 functhincfun.e . . . . . . . . 9 (𝜑𝐷 ∈ ThinCat)
109adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝐷 ∈ ThinCat)
113, 4, 2funcf1 17866 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
12 eqid 2734 . . . . . . . 8 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
13 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑓(𝐶 Func 𝐷)𝑔)
14 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
15 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
163, 5, 6, 13, 14, 15funcf2 17868 . . . . . . . . . 10 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))
1716f002 48726 . . . . . . . . 9 (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅))
1817ralrimivva 3185 . . . . . . . 8 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅))
193, 4, 5, 6, 8, 10, 11, 12, 18functhinc 49197 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → (𝑓(𝐶 Func 𝐷)𝑔𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))))
202, 19mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
21 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑓(𝐶 Func 𝐷))
223, 4, 5, 6, 8, 10, 11, 12, 18functhinc 49197 . . . . . . 7 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → (𝑓(𝐶 Func 𝐷) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))))
2321, 22mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
2420, 23eqtr4d 2772 . . . . 5 ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷))) → 𝑔 = )
2524ex 412 . . . 4 (𝜑 → ((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
2625alrimivv 1927 . . 3 (𝜑 → ∀𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
2726alrimiv 1926 . 2 (𝜑 → ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = ))
28 dffun2 6538 . . 3 (Fun (𝐶 Func 𝐷) ↔ (Rel (𝐶 Func 𝐷) ∧ ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = )))
2928biimpri 228 . 2 ((Rel (𝐶 Func 𝐷) ∧ ∀𝑓𝑔((𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func 𝐷)) → 𝑔 = )) → Fun (𝐶 Func 𝐷))
301, 27, 29sylancr 587 1 (𝜑 → Fun (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2107  c0 4306   class class class wbr 5117   × cxp 5650  Rel wrel 5657  Fun wfun 6522  cfv 6528  (class class class)co 7400  cmpo 7402  Basecbs 17215  Hom chom 17269  Catccat 17663   Func cfunc 17854  ThinCatcthinc 49166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-map 8837  df-ixp 8907  df-cat 17667  df-cid 17668  df-func 17858  df-thinc 49167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator