| Step | Hyp | Ref
| Expression |
| 1 | | relfunc 17903 |
. 2
⊢ Rel
(𝐶 Func 𝐷) |
| 2 | | simprl 771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → 𝑓(𝐶 Func 𝐷)𝑔) |
| 3 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 4 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 5 | | eqid 2736 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 6 | | eqid 2736 |
. . . . . . . 8
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 7 | | functhincfun.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → 𝐶 ∈ Cat) |
| 9 | | functhincfun.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| 10 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → 𝐷 ∈ ThinCat) |
| 11 | 3, 4, 2 | funcf1 17907 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → 𝑓:(Base‘𝐶)⟶(Base‘𝐷)) |
| 12 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)))) |
| 13 | | simplrl 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑓(𝐶 Func 𝐷)𝑔) |
| 14 | | simprl 771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
| 15 | | simprr 773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
| 16 | 3, 5, 6, 13, 14, 15 | funcf2 17909 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦))) |
| 17 | 16 | f002 48736 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅)) |
| 18 | 17 | ralrimivva 3201 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)) = ∅ → (𝑥(Hom ‘𝐶)𝑦) = ∅)) |
| 19 | 3, 4, 5, 6, 8, 10,
11, 12, 18 | functhinc 49070 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → (𝑓(𝐶 Func 𝐷)𝑔 ↔ 𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)))))) |
| 20 | 2, 19 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → 𝑔 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦))))) |
| 21 | | simprr 773 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → 𝑓(𝐶 Func 𝐷)ℎ) |
| 22 | 3, 4, 5, 6, 8, 10,
11, 12, 18 | functhinc 49070 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → (𝑓(𝐶 Func 𝐷)ℎ ↔ ℎ = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)))))) |
| 23 | 21, 22 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → ℎ = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦))))) |
| 24 | 20, 23 | eqtr4d 2779 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ)) → 𝑔 = ℎ) |
| 25 | 24 | ex 412 |
. . . 4
⊢ (𝜑 → ((𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ) → 𝑔 = ℎ)) |
| 26 | 25 | alrimivv 1928 |
. . 3
⊢ (𝜑 → ∀𝑔∀ℎ((𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ) → 𝑔 = ℎ)) |
| 27 | 26 | alrimiv 1927 |
. 2
⊢ (𝜑 → ∀𝑓∀𝑔∀ℎ((𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ) → 𝑔 = ℎ)) |
| 28 | | dffun2 6569 |
. . 3
⊢ (Fun
(𝐶 Func 𝐷) ↔ (Rel (𝐶 Func 𝐷) ∧ ∀𝑓∀𝑔∀ℎ((𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ) → 𝑔 = ℎ))) |
| 29 | 28 | biimpri 228 |
. 2
⊢ ((Rel
(𝐶 Func 𝐷) ∧ ∀𝑓∀𝑔∀ℎ((𝑓(𝐶 Func 𝐷)𝑔 ∧ 𝑓(𝐶 Func 𝐷)ℎ) → 𝑔 = ℎ)) → Fun (𝐶 Func 𝐷)) |
| 30 | 1, 27, 29 | sylancr 587 |
1
⊢ (𝜑 → Fun (𝐶 Func 𝐷)) |