Proof of Theorem metakunt2
| Step | Hyp | Ref
| Expression |
| 1 | | eleq1 2829 |
. . 3
⊢ (𝐼 = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (𝐼 ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀))) |
| 2 | | eleq1 2829 |
. . 3
⊢ (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀))) |
| 3 | | 1zzd 12648 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ∈ ℤ) |
| 4 | | metakunt2.1 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 5 | 4 | nnzd 12640 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | 5 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝑀 ∈ ℤ) |
| 7 | | metakunt2.2 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 8 | 7 | nnzd 12640 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 9 | 8 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ ℤ) |
| 10 | 7 | nnge1d 12314 |
. . . . 5
⊢ (𝜑 → 1 ≤ 𝐼) |
| 11 | 10 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ≤ 𝐼) |
| 12 | | metakunt2.3 |
. . . . 5
⊢ (𝜑 → 𝐼 ≤ 𝑀) |
| 13 | 12 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ≤ 𝑀) |
| 14 | 3, 6, 9, 11, 13 | elfzd 13555 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ (1...𝑀)) |
| 15 | | eleq1 2829 |
. . . 4
⊢ (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀))) |
| 16 | | eleq1 2829 |
. . . 4
⊢ ((𝑥 + 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → ((𝑥 + 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀))) |
| 17 | | simpllr 776 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀)) |
| 18 | | 1zzd 12648 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ∈ ℤ) |
| 19 | 5 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑀 ∈ ℤ) |
| 20 | | elfznn 13593 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ) |
| 21 | 20 | nnzd 12640 |
. . . . . . . 8
⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ) |
| 22 | 21 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 ∈ ℤ) |
| 23 | 22 | peano2zd 12725 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ ℤ) |
| 24 | | 0p1e1 12388 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
| 25 | | 0red 11264 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1...𝑀) → 0 ∈ ℝ) |
| 26 | 20 | nnred 12281 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ) |
| 27 | | 1red 11262 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ) |
| 28 | 20 | nnnn0d 12587 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ0) |
| 29 | 28 | nn0ge0d 12590 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1...𝑀) → 0 ≤ 𝑥) |
| 30 | 25, 26, 27, 29 | leadd1dd 11877 |
. . . . . . . 8
⊢ (𝑥 ∈ (1...𝑀) → (0 + 1) ≤ (𝑥 + 1)) |
| 31 | 24, 30 | eqbrtrrid 5179 |
. . . . . . 7
⊢ (𝑥 ∈ (1...𝑀) → 1 ≤ (𝑥 + 1)) |
| 32 | 31 | ad2antlr 727 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ≤ (𝑥 + 1)) |
| 33 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ∈ (1...𝑀)) |
| 34 | | neqne 2948 |
. . . . . . . . . 10
⊢ (¬
𝑥 = 𝑀 → 𝑥 ≠ 𝑀) |
| 35 | 34 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ≠ 𝑀) |
| 36 | 33, 35 | fzne2d 41981 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 < 𝑀) |
| 37 | 36 | adantrr 717 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 < 𝑀) |
| 38 | 21 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℤ) |
| 39 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℤ) |
| 40 | 38, 39 | zltp1led 41980 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑀)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀)) |
| 41 | 40 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀)) |
| 42 | 37, 41 | mpbid 232 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ≤ 𝑀) |
| 43 | 18, 19, 23, 32, 42 | elfzd 13555 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ (1...𝑀)) |
| 44 | 43 | anassrs 467 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (𝑥 + 1) ∈ (1...𝑀)) |
| 45 | 15, 16, 17, 44 | ifbothda 4564 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀)) |
| 46 | 1, 2, 14, 45 | ifbothda 4564 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀)) |
| 47 | | metakunt2.4 |
. 2
⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)))) |
| 48 | 46, 47 | fmptd 7134 |
1
⊢ (𝜑 → 𝐴:(1...𝑀)⟶(1...𝑀)) |