Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt2 Structured version   Visualization version   GIF version

Theorem metakunt2 41892
Description: A is an endomapping. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
metakunt2.1 (𝜑𝑀 ∈ ℕ)
metakunt2.2 (𝜑𝐼 ∈ ℕ)
metakunt2.3 (𝜑𝐼𝑀)
metakunt2.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))
Assertion
Ref Expression
metakunt2 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt2
StepHypRef Expression
1 eleq1 2814 . . 3 (𝐼 = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (𝐼 ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀)))
2 eleq1 2814 . . 3 (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀)))
3 1zzd 12645 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ∈ ℤ)
4 metakunt2.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnzd 12637 . . . . 5 (𝜑𝑀 ∈ ℤ)
65ad2antrr 724 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝑀 ∈ ℤ)
7 metakunt2.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
87nnzd 12637 . . . . 5 (𝜑𝐼 ∈ ℤ)
98ad2antrr 724 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ ℤ)
107nnge1d 12312 . . . . 5 (𝜑 → 1 ≤ 𝐼)
1110ad2antrr 724 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ≤ 𝐼)
12 metakunt2.3 . . . . 5 (𝜑𝐼𝑀)
1312ad2antrr 724 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼𝑀)
143, 6, 9, 11, 13elfzd 13546 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ (1...𝑀))
15 eleq1 2814 . . . 4 (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀)))
16 eleq1 2814 . . . 4 ((𝑥 + 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → ((𝑥 + 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀)))
17 simpllr 774 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀))
18 1zzd 12645 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ∈ ℤ)
195ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑀 ∈ ℤ)
20 elfznn 13584 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2120nnzd 12637 . . . . . . . 8 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
2221ad2antlr 725 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 ∈ ℤ)
2322peano2zd 12721 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ ℤ)
24 0p1e1 12386 . . . . . . . 8 (0 + 1) = 1
25 0red 11267 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 0 ∈ ℝ)
2620nnred 12279 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ)
27 1red 11265 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ)
2820nnnn0d 12584 . . . . . . . . . 10 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ0)
2928nn0ge0d 12587 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 0 ≤ 𝑥)
3025, 26, 27, 29leadd1dd 11878 . . . . . . . 8 (𝑥 ∈ (1...𝑀) → (0 + 1) ≤ (𝑥 + 1))
3124, 30eqbrtrrid 5189 . . . . . . 7 (𝑥 ∈ (1...𝑀) → 1 ≤ (𝑥 + 1))
3231ad2antlr 725 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ≤ (𝑥 + 1))
33 simplr 767 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ∈ (1...𝑀))
34 neqne 2938 . . . . . . . . . 10 𝑥 = 𝑀𝑥𝑀)
3534adantl 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥𝑀)
3633, 35fzne2d 41679 . . . . . . . 8 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 < 𝑀)
3736adantrr 715 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 < 𝑀)
3821adantl 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℤ)
395adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
4038, 39zltp1led 41678 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
4140adantr 479 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
4237, 41mpbid 231 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ≤ 𝑀)
4318, 19, 23, 32, 42elfzd 13546 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ (1...𝑀))
4443anassrs 466 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (𝑥 + 1) ∈ (1...𝑀))
4515, 16, 17, 44ifbothda 4571 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀))
461, 2, 14, 45ifbothda 4571 . 2 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀))
47 metakunt2.4 . 2 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))
4846, 47fmptd 7128 1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  ifcif 4533   class class class wbr 5153  cmpt 5236  wf 6550  (class class class)co 7424  0cc0 11158  1c1 11159   + caddc 11161   < clt 11298  cle 11299  cn 12264  cz 12610  ...cfz 13538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539
This theorem is referenced by:  metakunt10  41900  metakunt11  41901  metakunt12  41902  metakunt14  41904  metakunt33  41923
  Copyright terms: Public domain W3C validator