Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt2 Structured version   Visualization version   GIF version

Theorem metakunt2 40578
Description: A is an endomapping. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
metakunt2.1 (𝜑𝑀 ∈ ℕ)
metakunt2.2 (𝜑𝐼 ∈ ℕ)
metakunt2.3 (𝜑𝐼𝑀)
metakunt2.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))
Assertion
Ref Expression
metakunt2 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt2
StepHypRef Expression
1 eleq1 2825 . . 3 (𝐼 = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (𝐼 ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀)))
2 eleq1 2825 . . 3 (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀)))
3 1zzd 12534 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ∈ ℤ)
4 metakunt2.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnzd 12526 . . . . 5 (𝜑𝑀 ∈ ℤ)
65ad2antrr 724 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝑀 ∈ ℤ)
7 metakunt2.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
87nnzd 12526 . . . . 5 (𝜑𝐼 ∈ ℤ)
98ad2antrr 724 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ ℤ)
107nnge1d 12201 . . . . 5 (𝜑 → 1 ≤ 𝐼)
1110ad2antrr 724 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ≤ 𝐼)
12 metakunt2.3 . . . . 5 (𝜑𝐼𝑀)
1312ad2antrr 724 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼𝑀)
143, 6, 9, 11, 13elfzd 13432 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ (1...𝑀))
15 eleq1 2825 . . . 4 (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀)))
16 eleq1 2825 . . . 4 ((𝑥 + 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → ((𝑥 + 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀)))
17 simpllr 774 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀))
18 1zzd 12534 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ∈ ℤ)
195ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑀 ∈ ℤ)
20 elfznn 13470 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2120nnzd 12526 . . . . . . . 8 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
2221ad2antlr 725 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 ∈ ℤ)
2322peano2zd 12610 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ ℤ)
24 0p1e1 12275 . . . . . . . 8 (0 + 1) = 1
25 0red 11158 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 0 ∈ ℝ)
2620nnred 12168 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ)
27 1red 11156 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ)
2820nnnn0d 12473 . . . . . . . . . 10 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ0)
2928nn0ge0d 12476 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 0 ≤ 𝑥)
3025, 26, 27, 29leadd1dd 11769 . . . . . . . 8 (𝑥 ∈ (1...𝑀) → (0 + 1) ≤ (𝑥 + 1))
3124, 30eqbrtrrid 5141 . . . . . . 7 (𝑥 ∈ (1...𝑀) → 1 ≤ (𝑥 + 1))
3231ad2antlr 725 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ≤ (𝑥 + 1))
33 simplr 767 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ∈ (1...𝑀))
34 neqne 2951 . . . . . . . . . 10 𝑥 = 𝑀𝑥𝑀)
3534adantl 482 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥𝑀)
3633, 35fzne2d 40438 . . . . . . . 8 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 < 𝑀)
3736adantrr 715 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 < 𝑀)
3821adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℤ)
395adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
4038, 39zltp1led 40437 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
4140adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
4237, 41mpbid 231 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ≤ 𝑀)
4318, 19, 23, 32, 42elfzd 13432 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ (1...𝑀))
4443anassrs 468 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (𝑥 + 1) ∈ (1...𝑀))
4515, 16, 17, 44ifbothda 4524 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀))
461, 2, 14, 45ifbothda 4524 . 2 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀))
47 metakunt2.4 . 2 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))
4846, 47fmptd 7062 1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  ifcif 4486   class class class wbr 5105  cmpt 5188  wf 6492  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cn 12153  cz 12499  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  metakunt10  40586  metakunt11  40587  metakunt12  40588  metakunt14  40590  metakunt33  40609
  Copyright terms: Public domain W3C validator