Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt2 Structured version   Visualization version   GIF version

Theorem metakunt2 39348
 Description: A is an endomapping. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
metakunt2.1 (𝜑𝑀 ∈ ℕ)
metakunt2.2 (𝜑𝐼 ∈ ℕ)
metakunt2.3 (𝜑𝐼𝑀)
metakunt2.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))
Assertion
Ref Expression
metakunt2 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt2
StepHypRef Expression
1 eleq1 2880 . . 3 (𝐼 = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (𝐼 ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀)))
2 eleq1 2880 . . 3 (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀)))
3 1zzd 12005 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ∈ ℤ)
4 metakunt2.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnzd 12078 . . . . 5 (𝜑𝑀 ∈ ℤ)
65ad2antrr 725 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝑀 ∈ ℤ)
7 metakunt2.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
87nnzd 12078 . . . . 5 (𝜑𝐼 ∈ ℤ)
98ad2antrr 725 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ ℤ)
107nnge1d 11677 . . . . 5 (𝜑 → 1 ≤ 𝐼)
1110ad2antrr 725 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ≤ 𝐼)
12 metakunt2.3 . . . . 5 (𝜑𝐼𝑀)
1312ad2antrr 725 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼𝑀)
143, 6, 9, 11, 13elfzd 12897 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ (1...𝑀))
15 eleq1 2880 . . . 4 (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀)))
16 eleq1 2880 . . . 4 ((𝑥 + 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → ((𝑥 + 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀)))
17 simpllr 775 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀))
18 1zzd 12005 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ∈ ℤ)
195ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑀 ∈ ℤ)
20 elfznn 12935 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2120nnzd 12078 . . . . . . . 8 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
2221ad2antlr 726 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 ∈ ℤ)
2322peano2zd 12082 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ ℤ)
24 0p1e1 11751 . . . . . . . 8 (0 + 1) = 1
25 0red 10637 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 0 ∈ ℝ)
2620nnred 11644 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ)
27 1red 10635 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ)
2820nnnn0d 11947 . . . . . . . . . 10 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ0)
2928nn0ge0d 11950 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 0 ≤ 𝑥)
3025, 26, 27, 29leadd1dd 11247 . . . . . . . 8 (𝑥 ∈ (1...𝑀) → (0 + 1) ≤ (𝑥 + 1))
3124, 30eqbrtrrid 5069 . . . . . . 7 (𝑥 ∈ (1...𝑀) → 1 ≤ (𝑥 + 1))
3231ad2antlr 726 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ≤ (𝑥 + 1))
33 simplr 768 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ∈ (1...𝑀))
34 neqne 2998 . . . . . . . . . 10 𝑥 = 𝑀𝑥𝑀)
3534adantl 485 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥𝑀)
3633, 35fzne2d 39267 . . . . . . . 8 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 < 𝑀)
3736adantrr 716 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 < 𝑀)
3821adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℤ)
395adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
4038, 39zltp1led 39266 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
4140adantr 484 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
4237, 41mpbid 235 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ≤ 𝑀)
4318, 19, 23, 32, 42elfzd 12897 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ (1...𝑀))
4443anassrs 471 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (𝑥 + 1) ∈ (1...𝑀))
4515, 16, 17, 44ifbothda 4465 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀))
461, 2, 14, 45ifbothda 4465 . 2 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀))
47 metakunt2.4 . 2 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))
4846, 47fmptd 6859 1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ifcif 4428   class class class wbr 5033   ↦ cmpt 5113  ⟶wf 6324  (class class class)co 7139  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668   ≤ cle 10669  ℕcn 11629  ℤcz 11973  ...cfz 12889 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890 This theorem is referenced by:  metakunt10  39356  metakunt11  39357  metakunt12  39358  metakunt14  39360
 Copyright terms: Public domain W3C validator