Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt2 Structured version   Visualization version   GIF version

Theorem metakunt2 40126
Description: A is an endomapping. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
metakunt2.1 (𝜑𝑀 ∈ ℕ)
metakunt2.2 (𝜑𝐼 ∈ ℕ)
metakunt2.3 (𝜑𝐼𝑀)
metakunt2.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))
Assertion
Ref Expression
metakunt2 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐼(𝑥)

Proof of Theorem metakunt2
StepHypRef Expression
1 eleq1 2826 . . 3 (𝐼 = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (𝐼 ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀)))
2 eleq1 2826 . . 3 (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) = if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) → (if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀) ↔ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀)))
3 1zzd 12351 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ∈ ℤ)
4 metakunt2.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnzd 12425 . . . . 5 (𝜑𝑀 ∈ ℤ)
65ad2antrr 723 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝑀 ∈ ℤ)
7 metakunt2.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
87nnzd 12425 . . . . 5 (𝜑𝐼 ∈ ℤ)
98ad2antrr 723 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ ℤ)
107nnge1d 12021 . . . . 5 (𝜑 → 1 ≤ 𝐼)
1110ad2antrr 723 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 1 ≤ 𝐼)
12 metakunt2.3 . . . . 5 (𝜑𝐼𝑀)
1312ad2antrr 723 . . . 4 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼𝑀)
143, 6, 9, 11, 13elfzd 13247 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝐼 ∈ (1...𝑀))
15 eleq1 2826 . . . 4 (𝑥 = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → (𝑥 ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀)))
16 eleq1 2826 . . . 4 ((𝑥 + 1) = if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) → ((𝑥 + 1) ∈ (1...𝑀) ↔ if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀)))
17 simpllr 773 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...𝑀))
18 1zzd 12351 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ∈ ℤ)
195ad2antrr 723 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑀 ∈ ℤ)
20 elfznn 13285 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2120nnzd 12425 . . . . . . . 8 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
2221ad2antlr 724 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 ∈ ℤ)
2322peano2zd 12429 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ ℤ)
24 0p1e1 12095 . . . . . . . 8 (0 + 1) = 1
25 0red 10978 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 0 ∈ ℝ)
2620nnred 11988 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℝ)
27 1red 10976 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 1 ∈ ℝ)
2820nnnn0d 12293 . . . . . . . . . 10 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ0)
2928nn0ge0d 12296 . . . . . . . . 9 (𝑥 ∈ (1...𝑀) → 0 ≤ 𝑥)
3025, 26, 27, 29leadd1dd 11589 . . . . . . . 8 (𝑥 ∈ (1...𝑀) → (0 + 1) ≤ (𝑥 + 1))
3124, 30eqbrtrrid 5110 . . . . . . 7 (𝑥 ∈ (1...𝑀) → 1 ≤ (𝑥 + 1))
3231ad2antlr 724 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 1 ≤ (𝑥 + 1))
33 simplr 766 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ∈ (1...𝑀))
34 neqne 2951 . . . . . . . . . 10 𝑥 = 𝑀𝑥𝑀)
3534adantl 482 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥𝑀)
3633, 35fzne2d 39989 . . . . . . . 8 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 < 𝑀)
3736adantrr 714 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → 𝑥 < 𝑀)
3821adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℤ)
395adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
4038, 39zltp1led 39988 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑀)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
4140adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
4237, 41mpbid 231 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ≤ 𝑀)
4318, 19, 23, 32, 42elfzd 13247 . . . . 5 (((𝜑𝑥 ∈ (1...𝑀)) ∧ (¬ 𝑥 = 𝑀 ∧ ¬ 𝑥 < 𝐼)) → (𝑥 + 1) ∈ (1...𝑀))
4443anassrs 468 . . . 4 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (𝑥 + 1) ∈ (1...𝑀))
4515, 16, 17, 44ifbothda 4497 . . 3 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → if(𝑥 < 𝐼, 𝑥, (𝑥 + 1)) ∈ (1...𝑀))
461, 2, 14, 45ifbothda 4497 . 2 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))) ∈ (1...𝑀))
47 metakunt2.4 . 2 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))
4846, 47fmptd 6988 1 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  ifcif 4459   class class class wbr 5074  cmpt 5157  wf 6429  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cn 11973  cz 12319  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  metakunt10  40134  metakunt11  40135  metakunt12  40136  metakunt14  40138  metakunt33  40157
  Copyright terms: Public domain W3C validator