![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmco | Structured version Visualization version GIF version |
Description: The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ghmco | ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmmhm 19266 | . . 3 ⊢ (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝐹 ∈ (𝑇 MndHom 𝑈)) | |
2 | ghmmhm 19266 | . . 3 ⊢ (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺 ∈ (𝑆 MndHom 𝑇)) | |
3 | mhmco 18858 | . . 3 ⊢ ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MndHom 𝑈)) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MndHom 𝑈)) |
5 | ghmgrp1 19258 | . . 3 ⊢ (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
6 | ghmgrp2 19259 | . . 3 ⊢ (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝑈 ∈ Grp) | |
7 | ghmmhmb 19267 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑈 ∈ Grp) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈)) | |
8 | 5, 6, 7 | syl2anr 596 | . 2 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈)) |
9 | 4, 8 | eleqtrrd 2847 | 1 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∘ ccom 5704 (class class class)co 7448 MndHom cmhm 18816 Grpcgrp 18973 GrpHom cghm 19252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-ghm 19253 |
This theorem is referenced by: gimco 19308 rnghmco 20483 rhmco 20527 lmhmco 21065 lmhmvsca 21067 frgpcyg 21615 nmoco 24779 nghmco 24780 |
Copyright terms: Public domain | W3C validator |