MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalm Structured version   Visualization version   GIF version

Theorem lsmelvalm 19565
Description: Subgroup sum membership analogue of lsmelval 19563 using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmelvalm.m = (-g𝐺)
lsmelvalm.p = (LSSum‘𝐺)
lsmelvalm.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmelvalm.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
lsmelvalm (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
Distinct variable groups:   𝑦,𝑧,   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧
Allowed substitution hints:   (𝑦,𝑧)

Proof of Theorem lsmelvalm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsmelvalm.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 lsmelvalm.u . . 3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
4 lsmelvalm.p . . . 4 = (LSSum‘𝐺)
53, 4lsmelval 19563 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
61, 2, 5syl2anc 584 . 2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
72adantr 480 . . . . . . . 8 ((𝜑𝑦𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
8 eqid 2729 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
98subginvcl 19049 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑈) → ((invg𝐺)‘𝑥) ∈ 𝑈)
107, 9sylan 580 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → ((invg𝐺)‘𝑥) ∈ 𝑈)
11 eqid 2729 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
12 lsmelvalm.m . . . . . . . . 9 = (-g𝐺)
13 subgrcl 19045 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
141, 13syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
1514ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝐺 ∈ Grp)
1611subgss 19041 . . . . . . . . . . . 12 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
171, 16syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝐺))
1817sselda 3943 . . . . . . . . . 10 ((𝜑𝑦𝑇) → 𝑦 ∈ (Base‘𝐺))
1918adantr 480 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝑦 ∈ (Base‘𝐺))
2011subgss 19041 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
217, 20syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑇) → 𝑈 ⊆ (Base‘𝐺))
2221sselda 3943 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝑥 ∈ (Base‘𝐺))
2311, 3, 12, 8, 15, 19, 22grpsubinv 18926 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑦 ((invg𝐺)‘𝑥)) = (𝑦(+g𝐺)𝑥))
2423eqcomd 2735 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑦(+g𝐺)𝑥) = (𝑦 ((invg𝐺)‘𝑥)))
25 oveq2 7377 . . . . . . . 8 (𝑧 = ((invg𝐺)‘𝑥) → (𝑦 𝑧) = (𝑦 ((invg𝐺)‘𝑥)))
2625rspceeqv 3608 . . . . . . 7 ((((invg𝐺)‘𝑥) ∈ 𝑈 ∧ (𝑦(+g𝐺)𝑥) = (𝑦 ((invg𝐺)‘𝑥))) → ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧))
2710, 24, 26syl2anc 584 . . . . . 6 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧))
28 eqeq1 2733 . . . . . . 7 (𝑋 = (𝑦(+g𝐺)𝑥) → (𝑋 = (𝑦 𝑧) ↔ (𝑦(+g𝐺)𝑥) = (𝑦 𝑧)))
2928rexbidv 3157 . . . . . 6 (𝑋 = (𝑦(+g𝐺)𝑥) → (∃𝑧𝑈 𝑋 = (𝑦 𝑧) ↔ ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧)))
3027, 29syl5ibrcom 247 . . . . 5 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑋 = (𝑦(+g𝐺)𝑥) → ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
3130rexlimdva 3134 . . . 4 ((𝜑𝑦𝑇) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) → ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
328subginvcl 19049 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑈) → ((invg𝐺)‘𝑧) ∈ 𝑈)
337, 32sylan 580 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → ((invg𝐺)‘𝑧) ∈ 𝑈)
3418adantr 480 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → 𝑦 ∈ (Base‘𝐺))
3521sselda 3943 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → 𝑧 ∈ (Base‘𝐺))
3611, 3, 8, 12grpsubval 18899 . . . . . . . 8 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
3734, 35, 36syl2anc 584 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
38 oveq2 7377 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑧) → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
3938rspceeqv 3608 . . . . . . 7 ((((invg𝐺)‘𝑧) ∈ 𝑈 ∧ (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧))) → ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥))
4033, 37, 39syl2anc 584 . . . . . 6 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥))
41 eqeq1 2733 . . . . . . 7 (𝑋 = (𝑦 𝑧) → (𝑋 = (𝑦(+g𝐺)𝑥) ↔ (𝑦 𝑧) = (𝑦(+g𝐺)𝑥)))
4241rexbidv 3157 . . . . . 6 (𝑋 = (𝑦 𝑧) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥)))
4340, 42syl5ibrcom 247 . . . . 5 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → (𝑋 = (𝑦 𝑧) → ∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
4443rexlimdva 3134 . . . 4 ((𝜑𝑦𝑇) → (∃𝑧𝑈 𝑋 = (𝑦 𝑧) → ∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
4531, 44impbid 212 . . 3 ((𝜑𝑦𝑇) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
4645rexbidva 3155 . 2 (𝜑 → (∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
476, 46bitrd 279 1 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Grpcgrp 18847  invgcminusg 18848  -gcsg 18849  SubGrpcsubg 19034  LSSumclsm 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-lsm 19550
This theorem is referenced by:  lsmelvalmi  19566  pgpfac1lem2  19991  pgpfac1lem3  19993  pgpfac1lem4  19994  mapdpglem3  41662
  Copyright terms: Public domain W3C validator