MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalm Structured version   Visualization version   GIF version

Theorem lsmelvalm 19693
Description: Subgroup sum membership analogue of lsmelval 19691 using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmelvalm.m = (-g𝐺)
lsmelvalm.p = (LSSum‘𝐺)
lsmelvalm.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmelvalm.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
lsmelvalm (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
Distinct variable groups:   𝑦,𝑧,   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧
Allowed substitution hints:   (𝑦,𝑧)

Proof of Theorem lsmelvalm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsmelvalm.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 lsmelvalm.u . . 3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 eqid 2740 . . . 4 (+g𝐺) = (+g𝐺)
4 lsmelvalm.p . . . 4 = (LSSum‘𝐺)
53, 4lsmelval 19691 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
61, 2, 5syl2anc 583 . 2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
72adantr 480 . . . . . . . 8 ((𝜑𝑦𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
8 eqid 2740 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
98subginvcl 19175 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑈) → ((invg𝐺)‘𝑥) ∈ 𝑈)
107, 9sylan 579 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → ((invg𝐺)‘𝑥) ∈ 𝑈)
11 eqid 2740 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
12 lsmelvalm.m . . . . . . . . 9 = (-g𝐺)
13 subgrcl 19171 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
141, 13syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
1514ad2antrr 725 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝐺 ∈ Grp)
1611subgss 19167 . . . . . . . . . . . 12 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
171, 16syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝐺))
1817sselda 4008 . . . . . . . . . 10 ((𝜑𝑦𝑇) → 𝑦 ∈ (Base‘𝐺))
1918adantr 480 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝑦 ∈ (Base‘𝐺))
2011subgss 19167 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
217, 20syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑇) → 𝑈 ⊆ (Base‘𝐺))
2221sselda 4008 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝑥 ∈ (Base‘𝐺))
2311, 3, 12, 8, 15, 19, 22grpsubinv 19052 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑦 ((invg𝐺)‘𝑥)) = (𝑦(+g𝐺)𝑥))
2423eqcomd 2746 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑦(+g𝐺)𝑥) = (𝑦 ((invg𝐺)‘𝑥)))
25 oveq2 7456 . . . . . . . 8 (𝑧 = ((invg𝐺)‘𝑥) → (𝑦 𝑧) = (𝑦 ((invg𝐺)‘𝑥)))
2625rspceeqv 3658 . . . . . . 7 ((((invg𝐺)‘𝑥) ∈ 𝑈 ∧ (𝑦(+g𝐺)𝑥) = (𝑦 ((invg𝐺)‘𝑥))) → ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧))
2710, 24, 26syl2anc 583 . . . . . 6 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧))
28 eqeq1 2744 . . . . . . 7 (𝑋 = (𝑦(+g𝐺)𝑥) → (𝑋 = (𝑦 𝑧) ↔ (𝑦(+g𝐺)𝑥) = (𝑦 𝑧)))
2928rexbidv 3185 . . . . . 6 (𝑋 = (𝑦(+g𝐺)𝑥) → (∃𝑧𝑈 𝑋 = (𝑦 𝑧) ↔ ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧)))
3027, 29syl5ibrcom 247 . . . . 5 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑋 = (𝑦(+g𝐺)𝑥) → ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
3130rexlimdva 3161 . . . 4 ((𝜑𝑦𝑇) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) → ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
328subginvcl 19175 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑈) → ((invg𝐺)‘𝑧) ∈ 𝑈)
337, 32sylan 579 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → ((invg𝐺)‘𝑧) ∈ 𝑈)
3418adantr 480 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → 𝑦 ∈ (Base‘𝐺))
3521sselda 4008 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → 𝑧 ∈ (Base‘𝐺))
3611, 3, 8, 12grpsubval 19025 . . . . . . . 8 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
3734, 35, 36syl2anc 583 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
38 oveq2 7456 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑧) → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
3938rspceeqv 3658 . . . . . . 7 ((((invg𝐺)‘𝑧) ∈ 𝑈 ∧ (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧))) → ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥))
4033, 37, 39syl2anc 583 . . . . . 6 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥))
41 eqeq1 2744 . . . . . . 7 (𝑋 = (𝑦 𝑧) → (𝑋 = (𝑦(+g𝐺)𝑥) ↔ (𝑦 𝑧) = (𝑦(+g𝐺)𝑥)))
4241rexbidv 3185 . . . . . 6 (𝑋 = (𝑦 𝑧) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥)))
4340, 42syl5ibrcom 247 . . . . 5 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → (𝑋 = (𝑦 𝑧) → ∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
4443rexlimdva 3161 . . . 4 ((𝜑𝑦𝑇) → (∃𝑧𝑈 𝑋 = (𝑦 𝑧) → ∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
4531, 44impbid 212 . . 3 ((𝜑𝑦𝑇) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
4645rexbidva 3183 . 2 (𝜑 → (∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
476, 46bitrd 279 1 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973  invgcminusg 18974  -gcsg 18975  SubGrpcsubg 19160  LSSumclsm 19676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-lsm 19678
This theorem is referenced by:  lsmelvalmi  19694  pgpfac1lem2  20119  pgpfac1lem3  20121  pgpfac1lem4  20122  mapdpglem3  41632
  Copyright terms: Public domain W3C validator