MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmtri Structured version   Visualization version   GIF version

Theorem nmtri 23888
Description: The triangle inequality for the norm of a sum. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmf.x 𝑋 = (Base‘𝐺)
nmf.n 𝑁 = (norm‘𝐺)
nmtri.p + = (+g𝐺)
Assertion
Ref Expression
nmtri ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + 𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))

Proof of Theorem nmtri
StepHypRef Expression
1 ngpgrp 23861 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
213ad2ant1 1132 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ Grp)
3 simp3 1137 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
4 nmf.x . . . . 5 𝑋 = (Base‘𝐺)
5 eqid 2736 . . . . 5 (invg𝐺) = (invg𝐺)
64, 5grpinvcl 18723 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
72, 3, 6syl2anc 584 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
8 nmf.n . . . 4 𝑁 = (norm‘𝐺)
9 eqid 2736 . . . 4 (-g𝐺) = (-g𝐺)
104, 8, 9nmmtri 23884 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(-g𝐺)((invg𝐺)‘𝐵))) ≤ ((𝑁𝐴) + (𝑁‘((invg𝐺)‘𝐵))))
117, 10syld3an3 1408 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴(-g𝐺)((invg𝐺)‘𝐵))) ≤ ((𝑁𝐴) + (𝑁‘((invg𝐺)‘𝐵))))
12 nmtri.p . . . 4 + = (+g𝐺)
13 simp2 1136 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
144, 12, 9, 5, 2, 13, 3grpsubinv 18744 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝐺)((invg𝐺)‘𝐵)) = (𝐴 + 𝐵))
1514fveq2d 6829 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴(-g𝐺)((invg𝐺)‘𝐵))) = (𝑁‘(𝐴 + 𝐵)))
164, 8, 5nminv 23883 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐵𝑋) → (𝑁‘((invg𝐺)‘𝐵)) = (𝑁𝐵))
17163adant2 1130 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((invg𝐺)‘𝐵)) = (𝑁𝐵))
1817oveq2d 7353 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) + (𝑁‘((invg𝐺)‘𝐵))) = ((𝑁𝐴) + (𝑁𝐵)))
1911, 15, 183brtr3d 5123 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + 𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5092  cfv 6479  (class class class)co 7337   + caddc 10975  cle 11111  Basecbs 17009  +gcplusg 17059  Grpcgrp 18673  invgcminusg 18674  -gcsg 18675  normcnm 23838  NrmGrpcngp 23839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-inf 9300  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-n0 12335  df-z 12421  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-0g 17249  df-topgen 17251  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-grp 18676  df-minusg 18677  df-sbg 18678  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-xms 23579  df-ms 23580  df-nm 23844  df-ngp 23845
This theorem is referenced by:  nmtri2  23889  tngngp3  23926  nmotri  24009
  Copyright terms: Public domain W3C validator