![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmtri | Structured version Visualization version GIF version |
Description: The triangle inequality for the norm of a sum. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | β’ π = (BaseβπΊ) |
nmf.n | β’ π = (normβπΊ) |
nmtri.p | β’ + = (+gβπΊ) |
Ref | Expression |
---|---|
nmtri | β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (πβ(π΄ + π΅)) β€ ((πβπ΄) + (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpgrp 24328 | . . . . 5 β’ (πΊ β NrmGrp β πΊ β Grp) | |
2 | 1 | 3ad2ant1 1133 | . . . 4 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β πΊ β Grp) |
3 | simp3 1138 | . . . 4 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β π΅ β π) | |
4 | nmf.x | . . . . 5 β’ π = (BaseβπΊ) | |
5 | eqid 2732 | . . . . 5 β’ (invgβπΊ) = (invgβπΊ) | |
6 | 4, 5 | grpinvcl 18908 | . . . 4 β’ ((πΊ β Grp β§ π΅ β π) β ((invgβπΊ)βπ΅) β π) |
7 | 2, 3, 6 | syl2anc 584 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β ((invgβπΊ)βπ΅) β π) |
8 | nmf.n | . . . 4 β’ π = (normβπΊ) | |
9 | eqid 2732 | . . . 4 β’ (-gβπΊ) = (-gβπΊ) | |
10 | 4, 8, 9 | nmmtri 24351 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ ((invgβπΊ)βπ΅) β π) β (πβ(π΄(-gβπΊ)((invgβπΊ)βπ΅))) β€ ((πβπ΄) + (πβ((invgβπΊ)βπ΅)))) |
11 | 7, 10 | syld3an3 1409 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (πβ(π΄(-gβπΊ)((invgβπΊ)βπ΅))) β€ ((πβπ΄) + (πβ((invgβπΊ)βπ΅)))) |
12 | nmtri.p | . . . 4 β’ + = (+gβπΊ) | |
13 | simp2 1137 | . . . 4 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β π΄ β π) | |
14 | 4, 12, 9, 5, 2, 13, 3 | grpsubinv 18932 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (π΄(-gβπΊ)((invgβπΊ)βπ΅)) = (π΄ + π΅)) |
15 | 14 | fveq2d 6895 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (πβ(π΄(-gβπΊ)((invgβπΊ)βπ΅))) = (πβ(π΄ + π΅))) |
16 | 4, 8, 5 | nminv 24350 | . . . 4 β’ ((πΊ β NrmGrp β§ π΅ β π) β (πβ((invgβπΊ)βπ΅)) = (πβπ΅)) |
17 | 16 | 3adant2 1131 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (πβ((invgβπΊ)βπ΅)) = (πβπ΅)) |
18 | 17 | oveq2d 7427 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β ((πβπ΄) + (πβ((invgβπΊ)βπ΅))) = ((πβπ΄) + (πβπ΅))) |
19 | 11, 15, 18 | 3brtr3d 5179 | 1 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (πβ(π΄ + π΅)) β€ ((πβπ΄) + (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7411 + caddc 11115 β€ cle 11253 Basecbs 17148 +gcplusg 17201 Grpcgrp 18855 invgcminusg 18856 -gcsg 18857 normcnm 24305 NrmGrpcngp 24306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-0g 17391 df-topgen 17393 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-xms 24046 df-ms 24047 df-nm 24311 df-ngp 24312 |
This theorem is referenced by: nmtri2 24356 tngngp3 24393 nmotri 24476 |
Copyright terms: Public domain | W3C validator |