MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdisj1 Structured version   Visualization version   GIF version

Theorem subgdisj1 19709
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
subgdisj.p + = (+g𝐺)
subgdisj.o 0 = (0g𝐺)
subgdisj.z 𝑍 = (Cntz‘𝐺)
subgdisj.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
subgdisj.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
subgdisj.i (𝜑 → (𝑇𝑈) = { 0 })
subgdisj.s (𝜑𝑇 ⊆ (𝑍𝑈))
subgdisj.a (𝜑𝐴𝑇)
subgdisj.c (𝜑𝐶𝑇)
subgdisj.b (𝜑𝐵𝑈)
subgdisj.d (𝜑𝐷𝑈)
subgdisj.j (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
subgdisj1 (𝜑𝐴 = 𝐶)

Proof of Theorem subgdisj1
StepHypRef Expression
1 subgdisj.t . . . . . 6 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgdisj.a . . . . . 6 (𝜑𝐴𝑇)
3 subgdisj.c . . . . . 6 (𝜑𝐶𝑇)
4 eqid 2737 . . . . . . 7 (-g𝐺) = (-g𝐺)
54subgsubcl 19155 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑇𝐶𝑇) → (𝐴(-g𝐺)𝐶) ∈ 𝑇)
61, 2, 3, 5syl3anc 1373 . . . . 5 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ 𝑇)
7 subgdisj.j . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
8 subgdisj.s . . . . . . . . . . 11 (𝜑𝑇 ⊆ (𝑍𝑈))
98, 3sseldd 3984 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝑍𝑈))
10 subgdisj.b . . . . . . . . . 10 (𝜑𝐵𝑈)
11 subgdisj.p . . . . . . . . . . 11 + = (+g𝐺)
12 subgdisj.z . . . . . . . . . . 11 𝑍 = (Cntz‘𝐺)
1311, 12cntzi 19347 . . . . . . . . . 10 ((𝐶 ∈ (𝑍𝑈) ∧ 𝐵𝑈) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
149, 10, 13syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐵) = (𝐵 + 𝐶))
157, 14oveq12d 7449 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
16 subgrcl 19149 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
171, 16syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
18 eqid 2737 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
1918subgss 19145 . . . . . . . . . . . 12 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
201, 19syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝐺))
2120, 2sseldd 3984 . . . . . . . . . 10 (𝜑𝐴 ∈ (Base‘𝐺))
22 subgdisj.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ (SubGrp‘𝐺))
2318subgss 19145 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2422, 23syl 17 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (Base‘𝐺))
2524, 10sseldd 3984 . . . . . . . . . 10 (𝜑𝐵 ∈ (Base‘𝐺))
2618, 11grpcl 18959 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴 + 𝐵) ∈ (Base‘𝐺))
2717, 21, 25, 26syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ∈ (Base‘𝐺))
2820, 3sseldd 3984 . . . . . . . . 9 (𝜑𝐶 ∈ (Base‘𝐺))
2918, 11, 4grpsubsub4 19051 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝐴 + 𝐵) ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺))) → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)))
3017, 27, 25, 28, 29syl13anc 1374 . . . . . . . 8 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)))
317, 27eqeltrrd 2842 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ (Base‘𝐺))
3218, 11, 4grpsubsub4 19051 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝐶 + 𝐷) ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺))) → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
3317, 31, 28, 25, 32syl13anc 1374 . . . . . . . 8 (𝜑 → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
3415, 30, 333eqtr4d 2787 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵))
3518, 11, 4grppncan 19049 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → ((𝐴 + 𝐵)(-g𝐺)𝐵) = 𝐴)
3617, 21, 25, 35syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵)(-g𝐺)𝐵) = 𝐴)
3736oveq1d 7446 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = (𝐴(-g𝐺)𝐶))
38 subgdisj.d . . . . . . . . . . 11 (𝜑𝐷𝑈)
3911, 12cntzi 19347 . . . . . . . . . . 11 ((𝐶 ∈ (𝑍𝑈) ∧ 𝐷𝑈) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
409, 38, 39syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶))
4140oveq1d 7446 . . . . . . . . 9 (𝜑 → ((𝐶 + 𝐷)(-g𝐺)𝐶) = ((𝐷 + 𝐶)(-g𝐺)𝐶))
4224, 38sseldd 3984 . . . . . . . . . 10 (𝜑𝐷 ∈ (Base‘𝐺))
4318, 11, 4grppncan 19049 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐷 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺)) → ((𝐷 + 𝐶)(-g𝐺)𝐶) = 𝐷)
4417, 42, 28, 43syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝐷 + 𝐶)(-g𝐺)𝐶) = 𝐷)
4541, 44eqtrd 2777 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷)(-g𝐺)𝐶) = 𝐷)
4645oveq1d 7446 . . . . . . 7 (𝜑 → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = (𝐷(-g𝐺)𝐵))
4734, 37, 463eqtr3d 2785 . . . . . 6 (𝜑 → (𝐴(-g𝐺)𝐶) = (𝐷(-g𝐺)𝐵))
484subgsubcl 19155 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝐷𝑈𝐵𝑈) → (𝐷(-g𝐺)𝐵) ∈ 𝑈)
4922, 38, 10, 48syl3anc 1373 . . . . . 6 (𝜑 → (𝐷(-g𝐺)𝐵) ∈ 𝑈)
5047, 49eqeltrd 2841 . . . . 5 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ 𝑈)
516, 50elind 4200 . . . 4 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ (𝑇𝑈))
52 subgdisj.i . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
5351, 52eleqtrd 2843 . . 3 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ { 0 })
54 elsni 4643 . . 3 ((𝐴(-g𝐺)𝐶) ∈ { 0 } → (𝐴(-g𝐺)𝐶) = 0 )
5553, 54syl 17 . 2 (𝜑 → (𝐴(-g𝐺)𝐶) = 0 )
56 subgdisj.o . . . 4 0 = (0g𝐺)
5718, 56, 4grpsubeq0 19044 . . 3 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺)) → ((𝐴(-g𝐺)𝐶) = 0𝐴 = 𝐶))
5817, 21, 28, 57syl3anc 1373 . 2 (𝜑 → ((𝐴(-g𝐺)𝐶) = 0𝐴 = 𝐶))
5955, 58mpbid 232 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cin 3950  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  -gcsg 18953  SubGrpcsubg 19138  Cntzccntz 19333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335
This theorem is referenced by:  subgdisj2  19710  subgdisjb  19711  lvecindp  21140
  Copyright terms: Public domain W3C validator