MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdisj1 Structured version   Visualization version   GIF version

Theorem subgdisj1 18414
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
subgdisj.p + = (+g𝐺)
subgdisj.o 0 = (0g𝐺)
subgdisj.z 𝑍 = (Cntz‘𝐺)
subgdisj.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
subgdisj.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
subgdisj.i (𝜑 → (𝑇𝑈) = { 0 })
subgdisj.s (𝜑𝑇 ⊆ (𝑍𝑈))
subgdisj.a (𝜑𝐴𝑇)
subgdisj.c (𝜑𝐶𝑇)
subgdisj.b (𝜑𝐵𝑈)
subgdisj.d (𝜑𝐷𝑈)
subgdisj.j (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
subgdisj1 (𝜑𝐴 = 𝐶)

Proof of Theorem subgdisj1
StepHypRef Expression
1 subgdisj.t . . . . . 6 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgdisj.a . . . . . 6 (𝜑𝐴𝑇)
3 subgdisj.c . . . . . 6 (𝜑𝐶𝑇)
4 eqid 2797 . . . . . . 7 (-g𝐺) = (-g𝐺)
54subgsubcl 17915 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑇𝐶𝑇) → (𝐴(-g𝐺)𝐶) ∈ 𝑇)
61, 2, 3, 5syl3anc 1491 . . . . 5 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ 𝑇)
7 subgdisj.j . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
8 subgdisj.s . . . . . . . . . . 11 (𝜑𝑇 ⊆ (𝑍𝑈))
98, 3sseldd 3797 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝑍𝑈))
10 subgdisj.b . . . . . . . . . 10 (𝜑𝐵𝑈)
11 subgdisj.p . . . . . . . . . . 11 + = (+g𝐺)
12 subgdisj.z . . . . . . . . . . 11 𝑍 = (Cntz‘𝐺)
1311, 12cntzi 18071 . . . . . . . . . 10 ((𝐶 ∈ (𝑍𝑈) ∧ 𝐵𝑈) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
149, 10, 13syl2anc 580 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐵) = (𝐵 + 𝐶))
157, 14oveq12d 6894 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
16 subgrcl 17909 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
171, 16syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
18 eqid 2797 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
1918subgss 17905 . . . . . . . . . . . 12 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
201, 19syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝐺))
2120, 2sseldd 3797 . . . . . . . . . 10 (𝜑𝐴 ∈ (Base‘𝐺))
22 subgdisj.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ (SubGrp‘𝐺))
2318subgss 17905 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2422, 23syl 17 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (Base‘𝐺))
2524, 10sseldd 3797 . . . . . . . . . 10 (𝜑𝐵 ∈ (Base‘𝐺))
2618, 11grpcl 17743 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴 + 𝐵) ∈ (Base‘𝐺))
2717, 21, 25, 26syl3anc 1491 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ∈ (Base‘𝐺))
2820, 3sseldd 3797 . . . . . . . . 9 (𝜑𝐶 ∈ (Base‘𝐺))
2918, 11, 4grpsubsub4 17821 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝐴 + 𝐵) ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺))) → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)))
3017, 27, 25, 28, 29syl13anc 1492 . . . . . . . 8 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)))
317, 27eqeltrrd 2877 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ (Base‘𝐺))
3218, 11, 4grpsubsub4 17821 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝐶 + 𝐷) ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺))) → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
3317, 31, 28, 25, 32syl13anc 1492 . . . . . . . 8 (𝜑 → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
3415, 30, 333eqtr4d 2841 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵))
3518, 11, 4grppncan 17819 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → ((𝐴 + 𝐵)(-g𝐺)𝐵) = 𝐴)
3617, 21, 25, 35syl3anc 1491 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵)(-g𝐺)𝐵) = 𝐴)
3736oveq1d 6891 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = (𝐴(-g𝐺)𝐶))
38 subgdisj.d . . . . . . . . . . 11 (𝜑𝐷𝑈)
3911, 12cntzi 18071 . . . . . . . . . . 11 ((𝐶 ∈ (𝑍𝑈) ∧ 𝐷𝑈) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
409, 38, 39syl2anc 580 . . . . . . . . . 10 (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶))
4140oveq1d 6891 . . . . . . . . 9 (𝜑 → ((𝐶 + 𝐷)(-g𝐺)𝐶) = ((𝐷 + 𝐶)(-g𝐺)𝐶))
4224, 38sseldd 3797 . . . . . . . . . 10 (𝜑𝐷 ∈ (Base‘𝐺))
4318, 11, 4grppncan 17819 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐷 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺)) → ((𝐷 + 𝐶)(-g𝐺)𝐶) = 𝐷)
4417, 42, 28, 43syl3anc 1491 . . . . . . . . 9 (𝜑 → ((𝐷 + 𝐶)(-g𝐺)𝐶) = 𝐷)
4541, 44eqtrd 2831 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷)(-g𝐺)𝐶) = 𝐷)
4645oveq1d 6891 . . . . . . 7 (𝜑 → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = (𝐷(-g𝐺)𝐵))
4734, 37, 463eqtr3d 2839 . . . . . 6 (𝜑 → (𝐴(-g𝐺)𝐶) = (𝐷(-g𝐺)𝐵))
484subgsubcl 17915 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝐷𝑈𝐵𝑈) → (𝐷(-g𝐺)𝐵) ∈ 𝑈)
4922, 38, 10, 48syl3anc 1491 . . . . . 6 (𝜑 → (𝐷(-g𝐺)𝐵) ∈ 𝑈)
5047, 49eqeltrd 2876 . . . . 5 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ 𝑈)
516, 50elind 3994 . . . 4 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ (𝑇𝑈))
52 subgdisj.i . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
5351, 52eleqtrd 2878 . . 3 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ { 0 })
54 elsni 4383 . . 3 ((𝐴(-g𝐺)𝐶) ∈ { 0 } → (𝐴(-g𝐺)𝐶) = 0 )
5553, 54syl 17 . 2 (𝜑 → (𝐴(-g𝐺)𝐶) = 0 )
56 subgdisj.o . . . 4 0 = (0g𝐺)
5718, 56, 4grpsubeq0 17814 . . 3 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺)) → ((𝐴(-g𝐺)𝐶) = 0𝐴 = 𝐶))
5817, 21, 28, 57syl3anc 1491 . 2 (𝜑 → ((𝐴(-g𝐺)𝐶) = 0𝐴 = 𝐶))
5955, 58mpbid 224 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  cin 3766  wss 3767  {csn 4366  cfv 6099  (class class class)co 6876  Basecbs 16181  +gcplusg 16264  0gc0g 16412  Grpcgrp 17735  -gcsg 17737  SubGrpcsubg 17898  Cntzccntz 18057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-0g 16414  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-grp 17738  df-minusg 17739  df-sbg 17740  df-subg 17901  df-cntz 18059
This theorem is referenced by:  subgdisj2  18415  subgdisjb  18416  lvecindp  19457
  Copyright terms: Public domain W3C validator