MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdisj1 Structured version   Visualization version   GIF version

Theorem subgdisj1 19597
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
subgdisj.p + = (+g𝐺)
subgdisj.o 0 = (0g𝐺)
subgdisj.z 𝑍 = (Cntz‘𝐺)
subgdisj.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
subgdisj.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
subgdisj.i (𝜑 → (𝑇𝑈) = { 0 })
subgdisj.s (𝜑𝑇 ⊆ (𝑍𝑈))
subgdisj.a (𝜑𝐴𝑇)
subgdisj.c (𝜑𝐶𝑇)
subgdisj.b (𝜑𝐵𝑈)
subgdisj.d (𝜑𝐷𝑈)
subgdisj.j (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
subgdisj1 (𝜑𝐴 = 𝐶)

Proof of Theorem subgdisj1
StepHypRef Expression
1 subgdisj.t . . . . . 6 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgdisj.a . . . . . 6 (𝜑𝐴𝑇)
3 subgdisj.c . . . . . 6 (𝜑𝐶𝑇)
4 eqid 2729 . . . . . . 7 (-g𝐺) = (-g𝐺)
54subgsubcl 19045 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑇𝐶𝑇) → (𝐴(-g𝐺)𝐶) ∈ 𝑇)
61, 2, 3, 5syl3anc 1373 . . . . 5 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ 𝑇)
7 subgdisj.j . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
8 subgdisj.s . . . . . . . . . . 11 (𝜑𝑇 ⊆ (𝑍𝑈))
98, 3sseldd 3944 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝑍𝑈))
10 subgdisj.b . . . . . . . . . 10 (𝜑𝐵𝑈)
11 subgdisj.p . . . . . . . . . . 11 + = (+g𝐺)
12 subgdisj.z . . . . . . . . . . 11 𝑍 = (Cntz‘𝐺)
1311, 12cntzi 19237 . . . . . . . . . 10 ((𝐶 ∈ (𝑍𝑈) ∧ 𝐵𝑈) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
149, 10, 13syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐵) = (𝐵 + 𝐶))
157, 14oveq12d 7387 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
16 subgrcl 19039 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
171, 16syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
18 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
1918subgss 19035 . . . . . . . . . . . 12 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
201, 19syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝐺))
2120, 2sseldd 3944 . . . . . . . . . 10 (𝜑𝐴 ∈ (Base‘𝐺))
22 subgdisj.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ (SubGrp‘𝐺))
2318subgss 19035 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2422, 23syl 17 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (Base‘𝐺))
2524, 10sseldd 3944 . . . . . . . . . 10 (𝜑𝐵 ∈ (Base‘𝐺))
2618, 11grpcl 18849 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴 + 𝐵) ∈ (Base‘𝐺))
2717, 21, 25, 26syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ∈ (Base‘𝐺))
2820, 3sseldd 3944 . . . . . . . . 9 (𝜑𝐶 ∈ (Base‘𝐺))
2918, 11, 4grpsubsub4 18941 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝐴 + 𝐵) ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺))) → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)))
3017, 27, 25, 28, 29syl13anc 1374 . . . . . . . 8 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)))
317, 27eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ (Base‘𝐺))
3218, 11, 4grpsubsub4 18941 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝐶 + 𝐷) ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺))) → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
3317, 31, 28, 25, 32syl13anc 1374 . . . . . . . 8 (𝜑 → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
3415, 30, 333eqtr4d 2774 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵))
3518, 11, 4grppncan 18939 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → ((𝐴 + 𝐵)(-g𝐺)𝐵) = 𝐴)
3617, 21, 25, 35syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵)(-g𝐺)𝐵) = 𝐴)
3736oveq1d 7384 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = (𝐴(-g𝐺)𝐶))
38 subgdisj.d . . . . . . . . . . 11 (𝜑𝐷𝑈)
3911, 12cntzi 19237 . . . . . . . . . . 11 ((𝐶 ∈ (𝑍𝑈) ∧ 𝐷𝑈) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
409, 38, 39syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶))
4140oveq1d 7384 . . . . . . . . 9 (𝜑 → ((𝐶 + 𝐷)(-g𝐺)𝐶) = ((𝐷 + 𝐶)(-g𝐺)𝐶))
4224, 38sseldd 3944 . . . . . . . . . 10 (𝜑𝐷 ∈ (Base‘𝐺))
4318, 11, 4grppncan 18939 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐷 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺)) → ((𝐷 + 𝐶)(-g𝐺)𝐶) = 𝐷)
4417, 42, 28, 43syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝐷 + 𝐶)(-g𝐺)𝐶) = 𝐷)
4541, 44eqtrd 2764 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷)(-g𝐺)𝐶) = 𝐷)
4645oveq1d 7384 . . . . . . 7 (𝜑 → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = (𝐷(-g𝐺)𝐵))
4734, 37, 463eqtr3d 2772 . . . . . 6 (𝜑 → (𝐴(-g𝐺)𝐶) = (𝐷(-g𝐺)𝐵))
484subgsubcl 19045 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝐷𝑈𝐵𝑈) → (𝐷(-g𝐺)𝐵) ∈ 𝑈)
4922, 38, 10, 48syl3anc 1373 . . . . . 6 (𝜑 → (𝐷(-g𝐺)𝐵) ∈ 𝑈)
5047, 49eqeltrd 2828 . . . . 5 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ 𝑈)
516, 50elind 4159 . . . 4 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ (𝑇𝑈))
52 subgdisj.i . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
5351, 52eleqtrd 2830 . . 3 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ { 0 })
54 elsni 4602 . . 3 ((𝐴(-g𝐺)𝐶) ∈ { 0 } → (𝐴(-g𝐺)𝐶) = 0 )
5553, 54syl 17 . 2 (𝜑 → (𝐴(-g𝐺)𝐶) = 0 )
56 subgdisj.o . . . 4 0 = (0g𝐺)
5718, 56, 4grpsubeq0 18934 . . 3 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺)) → ((𝐴(-g𝐺)𝐶) = 0𝐴 = 𝐶))
5817, 21, 28, 57syl3anc 1373 . 2 (𝜑 → ((𝐴(-g𝐺)𝐶) = 0𝐴 = 𝐶))
5955, 58mpbid 232 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cin 3910  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18841  -gcsg 18843  SubGrpcsubg 19028  Cntzccntz 19223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225
This theorem is referenced by:  subgdisj2  19598  subgdisjb  19599  lvecindp  21024
  Copyright terms: Public domain W3C validator