MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdisj1 Structured version   Visualization version   GIF version

Theorem subgdisj1 19733
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
subgdisj.p + = (+g𝐺)
subgdisj.o 0 = (0g𝐺)
subgdisj.z 𝑍 = (Cntz‘𝐺)
subgdisj.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
subgdisj.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
subgdisj.i (𝜑 → (𝑇𝑈) = { 0 })
subgdisj.s (𝜑𝑇 ⊆ (𝑍𝑈))
subgdisj.a (𝜑𝐴𝑇)
subgdisj.c (𝜑𝐶𝑇)
subgdisj.b (𝜑𝐵𝑈)
subgdisj.d (𝜑𝐷𝑈)
subgdisj.j (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
subgdisj1 (𝜑𝐴 = 𝐶)

Proof of Theorem subgdisj1
StepHypRef Expression
1 subgdisj.t . . . . . 6 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgdisj.a . . . . . 6 (𝜑𝐴𝑇)
3 subgdisj.c . . . . . 6 (𝜑𝐶𝑇)
4 eqid 2740 . . . . . . 7 (-g𝐺) = (-g𝐺)
54subgsubcl 19177 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑇𝐶𝑇) → (𝐴(-g𝐺)𝐶) ∈ 𝑇)
61, 2, 3, 5syl3anc 1371 . . . . 5 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ 𝑇)
7 subgdisj.j . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
8 subgdisj.s . . . . . . . . . . 11 (𝜑𝑇 ⊆ (𝑍𝑈))
98, 3sseldd 4009 . . . . . . . . . 10 (𝜑𝐶 ∈ (𝑍𝑈))
10 subgdisj.b . . . . . . . . . 10 (𝜑𝐵𝑈)
11 subgdisj.p . . . . . . . . . . 11 + = (+g𝐺)
12 subgdisj.z . . . . . . . . . . 11 𝑍 = (Cntz‘𝐺)
1311, 12cntzi 19369 . . . . . . . . . 10 ((𝐶 ∈ (𝑍𝑈) ∧ 𝐵𝑈) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
149, 10, 13syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐵) = (𝐵 + 𝐶))
157, 14oveq12d 7466 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
16 subgrcl 19171 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
171, 16syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
18 eqid 2740 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
1918subgss 19167 . . . . . . . . . . . 12 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
201, 19syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝐺))
2120, 2sseldd 4009 . . . . . . . . . 10 (𝜑𝐴 ∈ (Base‘𝐺))
22 subgdisj.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ (SubGrp‘𝐺))
2318subgss 19167 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2422, 23syl 17 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (Base‘𝐺))
2524, 10sseldd 4009 . . . . . . . . . 10 (𝜑𝐵 ∈ (Base‘𝐺))
2618, 11grpcl 18981 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴 + 𝐵) ∈ (Base‘𝐺))
2717, 21, 25, 26syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ∈ (Base‘𝐺))
2820, 3sseldd 4009 . . . . . . . . 9 (𝜑𝐶 ∈ (Base‘𝐺))
2918, 11, 4grpsubsub4 19073 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝐴 + 𝐵) ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺))) → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)))
3017, 27, 25, 28, 29syl13anc 1372 . . . . . . . 8 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = ((𝐴 + 𝐵)(-g𝐺)(𝐶 + 𝐵)))
317, 27eqeltrrd 2845 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ (Base‘𝐺))
3218, 11, 4grpsubsub4 19073 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((𝐶 + 𝐷) ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺))) → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
3317, 31, 28, 25, 32syl13anc 1372 . . . . . . . 8 (𝜑 → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = ((𝐶 + 𝐷)(-g𝐺)(𝐵 + 𝐶)))
3415, 30, 333eqtr4d 2790 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵))
3518, 11, 4grppncan 19071 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → ((𝐴 + 𝐵)(-g𝐺)𝐵) = 𝐴)
3617, 21, 25, 35syl3anc 1371 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵)(-g𝐺)𝐵) = 𝐴)
3736oveq1d 7463 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵)(-g𝐺)𝐵)(-g𝐺)𝐶) = (𝐴(-g𝐺)𝐶))
38 subgdisj.d . . . . . . . . . . 11 (𝜑𝐷𝑈)
3911, 12cntzi 19369 . . . . . . . . . . 11 ((𝐶 ∈ (𝑍𝑈) ∧ 𝐷𝑈) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
409, 38, 39syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶))
4140oveq1d 7463 . . . . . . . . 9 (𝜑 → ((𝐶 + 𝐷)(-g𝐺)𝐶) = ((𝐷 + 𝐶)(-g𝐺)𝐶))
4224, 38sseldd 4009 . . . . . . . . . 10 (𝜑𝐷 ∈ (Base‘𝐺))
4318, 11, 4grppncan 19071 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐷 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺)) → ((𝐷 + 𝐶)(-g𝐺)𝐶) = 𝐷)
4417, 42, 28, 43syl3anc 1371 . . . . . . . . 9 (𝜑 → ((𝐷 + 𝐶)(-g𝐺)𝐶) = 𝐷)
4541, 44eqtrd 2780 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷)(-g𝐺)𝐶) = 𝐷)
4645oveq1d 7463 . . . . . . 7 (𝜑 → (((𝐶 + 𝐷)(-g𝐺)𝐶)(-g𝐺)𝐵) = (𝐷(-g𝐺)𝐵))
4734, 37, 463eqtr3d 2788 . . . . . 6 (𝜑 → (𝐴(-g𝐺)𝐶) = (𝐷(-g𝐺)𝐵))
484subgsubcl 19177 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝐷𝑈𝐵𝑈) → (𝐷(-g𝐺)𝐵) ∈ 𝑈)
4922, 38, 10, 48syl3anc 1371 . . . . . 6 (𝜑 → (𝐷(-g𝐺)𝐵) ∈ 𝑈)
5047, 49eqeltrd 2844 . . . . 5 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ 𝑈)
516, 50elind 4223 . . . 4 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ (𝑇𝑈))
52 subgdisj.i . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
5351, 52eleqtrd 2846 . . 3 (𝜑 → (𝐴(-g𝐺)𝐶) ∈ { 0 })
54 elsni 4665 . . 3 ((𝐴(-g𝐺)𝐶) ∈ { 0 } → (𝐴(-g𝐺)𝐶) = 0 )
5553, 54syl 17 . 2 (𝜑 → (𝐴(-g𝐺)𝐶) = 0 )
56 subgdisj.o . . . 4 0 = (0g𝐺)
5718, 56, 4grpsubeq0 19066 . . 3 ((𝐺 ∈ Grp ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝐶 ∈ (Base‘𝐺)) → ((𝐴(-g𝐺)𝐶) = 0𝐴 = 𝐶))
5817, 21, 28, 57syl3anc 1371 . 2 (𝜑 → ((𝐴(-g𝐺)𝐶) = 0𝐴 = 𝐶))
5955, 58mpbid 232 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  cin 3975  wss 3976  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  -gcsg 18975  SubGrpcsubg 19160  Cntzccntz 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357
This theorem is referenced by:  subgdisj2  19734  subgdisjb  19735  lvecindp  21163
  Copyright terms: Public domain W3C validator