MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsub4 Structured version   Visualization version   GIF version

Theorem subsub4 11475
Description: Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subsub4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶)))

Proof of Theorem subsub4
StepHypRef Expression
1 nppcan2 11473 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴𝐵))
2 simp1 1136 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
3 simp2 1137 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
4 subcl 11441 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
52, 3, 4syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
6 simp3 1138 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
73, 6addcld 11215 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) ∈ ℂ)
8 subcl 11441 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ) → (𝐴 − (𝐵 + 𝐶)) ∈ ℂ)
92, 7, 8syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 + 𝐶)) ∈ ℂ)
10 subadd2 11446 . . 3 (((𝐴𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐴 − (𝐵 + 𝐶)) ∈ ℂ) → (((𝐴𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶)) ↔ ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴𝐵)))
115, 6, 9, 10syl3anc 1371 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶)) ↔ ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴𝐵)))
121, 11mpbird 256 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  (class class class)co 7393  cc 11090   + caddc 11095  cmin 11426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-ltxr 11235  df-sub 11428
This theorem is referenced by:  sub32  11476  nnncan  11477  pnpcan  11481  addsub4  11485  subsub4d  11584  2shfti  15009  divalglem2  16320  nn0seqcvgd  16489  plydivlem4  25738  ax5seglem7  28058  itg2addnclem3  36345
  Copyright terms: Public domain W3C validator